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Esra Saatçı and Aydın Akan

Abstract— Dynamic nonlinear models are the best choice to
analyze respiratory systems and to describe system mechanics.
In this work, Unscented Kalman Filtering (UKF) was used
to estimate the dynamic nonlinear model parameters of the
lung model by using the measured airway flow, mask pressure
and integrated lung volume. Artificially generated data and the
data from Chronic Obstructive Pulmonary Diseased (COPD)
patients were analyzed by the proposed model and the proposed
UKF algorithm. Simulation results for both cases demonstrated
that UKF is a promising estimation method for the respiratory
system analysis.

I. INTRODUCTION

Lung models (more generally respiratory system models)
are of great importance in determining respiratory mechan-
ics, especially in patients requiring ventilatory assist. Many
respiratory system models were constructed to simulate the
interaction between respiratory parameters such as respira-
tory resistance and airway flow and respiratory compliance
and lung volume indirectly [1], [2], [3]. These models were
then used to estimate the parameters by applying several
methodological approaches [4], [5].

Forced oscillation technique (FOT) [4] and impulse os-
cillometry (IOS) [6] are the recent favorite techniques and
used both in the literature and clinically for the noninvasive
respiratory system analysis. These techniques are based on
the description of respiratory system mechanics by linear
equivalent electrical models of different complexity with
lumped parameters. Although applicability and signal pro-
cessing techniques of the FOT and IOS are still being
investigated, the need of the additional hardware and linear
and deterministic model approach to the respiratory system
force the investigators to go for the more dynamic, nonlinear
and stochastic models.

Model of the respiratory system should incorporate the
dynamic nature of the respiration. However, dynamic model
of the respiratory system should not only track all rapid
changes in the parameters but also consider the time-varying
nature of the model parameters. Thus appropriate model
of the respiration system should be composed of the non-
constant terms.

The nonlinear model needs are presented in detail in [1],
[2]. The most importance of the nonlinear models is that they
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reflect the real system related to the gas dynamics inside the
airways and structural complexity of the lung and chest wall
tissue.

Measured airway flow, mask pressure are only data that
can be acquired nonivasively. Random nature of these dis-
crete signals necessitates stochastic signal processing tech-
niques.

In this work, Unscented Kalman Filtering (UKF) [7] was
used to estimate the nonlinear model parameters of the lung
model by using the measured airway flow, mask pressure and
integrated lung volume. In the first simulation, artificially
generated airway flow and mask pressure were used for
the estimation, then, in the second simulation to validate
the model the data from Chronic Obstructive Pulmonary
Diseased (COPD) patients were analyzed by proposed model
and UKF algorithm.

A. UKF Background

The Kalman Filter is an optimal filter for estimating
linear model parameters. However, for nonlinear systems
Extended Kalman Filter (EKF) [8] was developed. In EKF,
the state distribution is approximated by a Gaussian Random
Variable (GRV) and nonlinearities were linearized by first-
order approximations. However, this introduces large errors
in the mean and covariance of the transformed GRV. UKF
was developed to address these problems by using deter-
ministically selected sigma points to approximate the state
distribution as a GRV. The detailed comparison between EKF
and UKF and explanation on the UKF algorithms can be
found in [9].

UKF algorithm can be used for both state or parameter
estimation or joint/dual estimation. For the general discrete-
time nonlinear system state-observation equations are given
as:

xk+1 = F (xk, wk, uk) + qk (1)

yk = H(xk, wk, uk) + rk (2)

where xk represents the unobserved state of the system, wk

is the parameter vector, uk is the known input and yk is the
observed measurement signal. In this work the process noise
qk ∼ N (0, Qk) and the observation noise rk ∼ N (0, Rk)
are assumed to be additive Gaussian noises.

For the parameter estimation, the parameters are usually
considered as a markov process having a state representation
of:
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wk+1 = wk + nk (3)

where process noise nk ∼ N (0, Nk) is additive Gaussian
noise.

The covariance of the process noise in the parameter state
representation Nk affects the convergence rate and tracking
performance [9]. Although there are several methods to
manipulate Nk, in this work Nk is set to fixed diagonal value.
Details of the implemented UKF algorithm can be found in
[9].

II. LUNG MODEL

In this work one compartment nonlinear lumped parameter
electrical model of the lung was used (Fig.1). One compart-
ment model composed of one resistance and one capacitor
was adopted because of its simplicity. If basic circuit theory
rules are applied to the electric circuit in Fig.1, measured
mask pressure Paw (t) equation can be given as:

Paw (t) = Pr (t) + Pc (t) − Pmus (t) + Pven (t) (4)

In the model, R represents the upper airway resistance as
the biggest contribution to the resistive pressure lost in the
tidal breathing range comes from the upper airways. Rohrer’s
equation is used to compose the relation between airway flow
V̇ (t) and mask pressure Paw (t). Thus resistive pressure lost
in the model can be given as:

Pr (t) =
(
Au + Ku

∣∣∣V̇ (t)
∣∣∣) V̇ (t) (5)

Although the linear compliance models have been shown
to successfully simulate lung tissue behavior for small vol-
ume excursions, to generalize the model, dynamic pressure
across the nonlinear compliance C was adopted from the [2].
In [2], nonlinear dynamic pressure dependence upon lung
volume was given according to the formula:

Pc (t) = Ale
KlV (t) + Bl (6)

In (5) and (6), Au, Ku, Al, Kl and Bl constitute the
unknown parameter vector.

Since the pressure developed in the respiratory system
and measured in the patient’s mask expend relatively small
part of the patient’s effort during breathing and big part of
the ventilator generated pressure, a series of the independent
pressure sources are added to the model. Pmus (t) represents
the pressure effects on the measured Paw (t) done by the
patient’s inspiration muscles. Ventilator generated pressure
Pven (t) has a direct effect on the Paw (t) as it is the
major positive component shaping the waveform. It should
be emphasized that pressure sources Pmus (t) and Pven (t)
are added to the model and reflect only the related effects on
the Paw (t), thus should not be seen as a direct lung model
functions.

Pmus (t) can be approximated by the second-order poly-
nomial function [10]:

Fig. 1. One compartment nonlinear lumped parameter electrical model of
the lung

Pmus (t) =

{
−Pmus max

(
1 − t

TI

)2
+ Pmus max 0 ≤ t ≤ T

Pmus maxe−t/τm TI ≤ t ≤ T
(7)

where Pmus max represents the effect of maximal patient’s
effort on Paw (t), TI and T are the inspiration duration time
and total duration of one cycle respiration respectively. In
this work Pmus max is added to the unknown parameter
vector whereas TI and T are set to constant values. Time
constant τm is important parameter for mostly determining
the expiratory asynchrony in the assist ventilation [10].
Constant value was assigned to τm in order to mimic the
real respiratory system.

Ventilator generated pressure Pven is simulated by the
exponential function [10]:

Pven (t) =




PEEP 0 ≤ t ≤ ttrig

Pps

(
1 − e−t/τvi

)
ttrig < t ≤ TI

Pps

(
e−t/τve

)
TI < t ≤ T

(8)

where Pps represents the maximal ventilation pressure and
set to 10 cmH2O.

Positive End Expiration Pressure (PEEP) was also con-
sidered and set to 4 cmH2O. Ventilator inspiration time
constant τvi corresponds the flow acceleration speed of the
ventilator, whereas ventilator expiration time constant τve

is the ventilator deceleration speed and contributes to the
pressure rise at the termination of the inspiration. Both τvi

and τve were set to 0.006 s. The inspiration trigger delay of
the ventilator ttrig was set to 20 ms corresponding to the real
world scenario. Above set values for Pven (t) were applied
in both simulations.

A. State-Observation Equations of the Lung Model

State variables of the model circuit are the capacitor charge
which represents lung volume V (t) and the current through
the resistor which represents the airway flow V̇ (t). State
equations of the lung model are formulated from the model
by using Kirchhoff current and voltage laws. First state
equation:

dV (t)
dt

= V̇ (t) (9)
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and from (6)

dPc (t)
dt

= AlKle
KlV (t)V̇ (t) (10)

From (4) and (10) second state equation is formulated as:

dV̇ (t)
dt

=
Ṗaw (t) − Ṗven (t) + Ṗmus (t) − AlKle

KlV (t)V̇ (t)
Av + 2KvV̇ (t)

(11)
Observation equation is the measured mask pressure Paw:

Paw (t) =
(
Av + Kv

∣∣V̇ (t)
∣∣) V̇ (t)+Ale

KlV (t)+Bl−Pmus+Pven

(12)

B. Discretization of the Model Equations for UKF Algorithm

Equations (9), (11) and (12) should be discretized and
written in the form of (1) and (2) for UKF algorithm.
Thus discrete-time representation of the state-observation
equations was derived using the Euler integration method
to give the model equations in the matrix form:

[
Vk+1

V̇k+1

]
=[

V̇k

P k+1
aw −P k

aw−P k+1
ven +P k

ven+P k+1
mus−P k

mus−Ak
l

Kk
l

e
Kk

l
Vk V̇k

Ak
u+2Kk

uV̇k

]

+

[
Vk

V̇k

]
+ qk

(13)
where k is the discrete time indices and qk ∼ N (0, Qk) is
the process noise.

Observation equation is represented in discrete form as:

P k
aw =

(
Ak

u + Kk
u

∣∣V̇k

∣∣) V̇k +Ak
l eKk

l
Vk +Bk

l −P k
mus +P k

ven +rk

(14)
where rk ∼ N (0, Rk) is the observation noise.

As seen from (13) and (14) the model parameters are
written in dynamic form by the time indices k. Thus,
parameter state vector is represented as in (3) where wk =(

Ak
u Kk

u Ak
l Kk

l Bk
l P k

mus max

)T
.

III. LUNG MODEL PARAMETER ESTIMATION BY
UKF

Lung model parameter vector wk was estimated by using
both artificial airway flow and mask pressure signals and the
signals recorded from COPD patients. Only the observation
equation being nonlinear UKF algorithm was simplified and
computational cost was decreased.

Artificial airway flow is simulated as a sinusoidal signal
with maximum flow of 0.6 l/s, inspiration time TI of 1.4
s and total breathing cycle of 3.3 s. Artificial volume is
generated by integrating the artificial flow. Artificial Pmus (t)
pressure is simulated by using (7). Pmus max is set to 1.2
cmH2O, TI is 1.4 s and τm is 0.8 s. Pven (t) is generated by
(8) with the same constant values as explained in the section
II. Finally, Paw (t) is calculated by. Au is 0.31 cmH2O ·l−1 ·
s−1, Al is 0.1 cmH2O, Ku is 0.32 cmH2O · l−2 · s−2, Kl

TABLE I

UKF ALGORITHM PARAMETERS

Parameter Simulation I Simulation II
Initial wk vector ŵ0 = ŵ0 =
ŵ0 = E [w0] [1; 1; 1; 1; 1; 1] [1; 1; 1; 1; 1; 1]

Initial wk covariance matrix

P0 = E
[
(w0 − ŵ0) (w0 − ŵ0)T

]
P0 = 10−1 · I(6,6) P0 = 1 · I(6,6)

nk noise covariance matrix

Nk Nk = 10−5 · I(6,6) Nk = 10−3 · I(6,6)
Observation noise variance

Rk Rk = 0.2 Rk = 0.02
Sigma point scaling parameter

α α = 0.1 α = 0.1
Higher order scaling parameter

β β = 2 β = 2
Scalar tuning parameter

κ κ = 0 κ = 0

is 1.0 and Bl is 0 cmH2O [2]. Gaussian noise with variance
0.2 is also added to Paw signal as a measurement noise.

For the best parameter convergent values, UKF parameters
and initial values are set as in Table I. Pmus (t), Pr (t) and
Pc (t) pressure waveforms are calculated by using convergent
values of the model parameters applying (5), (6) and (7)
respectively and shown in Fig.2. Fig.3 shows model param-
eters’ convergence waveforms.

In order to verify the applicability of the model, the
parameter vector was estimated with the real clinical data.
10 COPD patients were recruited and connected to the non-
invasive ventilator (Respironics Inc. BIPAP S/T IPAP is set
to 10 cmH2O and PEEP is set to 4 cmH2O) via Facemask
(Respironics Inc. Spectrum size medium and small). Mask
pressure and airway flow were measured by the pneumota-
chograph and pressure transducer system (Hans Rudolph Inc.
Research pneumotachograph system). The sampling rate was
100 Hz.

1 cycle airway flow and corresponding mask pressure
was chosen. Pven (t) is generated by (8) with the same
constant values as explained in section II. Table I shows
the UKF parameters and initial values for the best parameter
convergent. Fig.4 shows Pmus (t), Pr (t) and Pc (t) pressure
waveforms produced by COPD patient’s data.

IV. DISCUSSION

In this work, one compartment nonlinear lung model was
constructed and state-observation equations of the model
are defined. Model parameters were estimated by UKF
estimation method.

Simulation results for both cases demonstrate that UKF
well suits to the respiratory system analysis. Moreover, Fig.3
shows the tracking ability of the UKF algorithm. Thus, UKF
can be used not only for estimation also for the tracking the
parameter changes over some defined time.

In order to evaluate the UKF parameter’s effects on
the estimation different set of UKF parameter values were
tried. Both in the artificial data and in the real measured
data Pmus max estimation is more robust than the other
parameters. The changes of UKF parameter α and process
noise covariance Nk had very small effect on the Pmus max

estimation.
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Fig. 2. Typical representation of resistive pressure dissipation curve,
capacitive pressure dissipation curve and muscular pressure effects on the
airway pressure curve (produced by artificial data)
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Fig. 3. Typical representation of lung model parameter convergence
waveforms (produced by artificial data). The dotted lines represents set
values
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Fig. 4. Typical representation of resistive pressure dissipation curve,
capacitive pressure dissipation curve and muscular pressure effects on the
airway pressure curve (produced by COPD patient’s data)

The most influential UKF parameter on the model pa-
rameter estimation were the observation noise variance Rk.
Especially for the artificial data when the observation noise
variance increased, parameter estimates of UKF got poorer.
This observation states that with noisy observed data mis-
leading estimation results could be given.

Convergent effects of process noise covariance Nk were
also experienced. In the real data case, the process noise
covariance was 100 times higher than it is in the artificial
data case. That states that the artificial data is in fact converge
more rapidly than the real data.

It is evident from the Fig.2 and Fig.4 that for both mea-
sured and produced data the proposed model gives similar
results. As it is expected Pr (t) increases right from the
onset of the inspiration whereas Pc (t) gradually increases
and peaks at the termination of the inspiration. Pmus (t) also
behaves as an expected manner.

In Fig.4 the effect of trigger time, ttrig on the Pc (t) can
be seen as a negative part at the onset of the inspiration.
This negative part of Pc (t) also results in peak at the Pr (t)
curve.

In conclusion, The new method based on UKF was used
to estimate the dynamic nonlinear lung model parameters.
Resistive and capacitive dissipation pressure curves were
presented both for the artificial data and COPD patient’s data.
In the future work, the developed model should be improved
to compose chest wall properties.
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