
 

 

 

  

Abstract—This paper proposes a method of 2-D translations 

estimation using an a priori signal model. Two analytical signals 

defined with multidimensional Hilbert transform are considered 

and shown to have linear phases with respect to the translations 

to estimate. A least squares estimator (LSE) is then developed to 

adjust the measured phases of the complex signals to their 

theoretical forms. Moreover, the LSE provides an analytical 

solution to the 2-D translation estimation problem. The 

estimator is then included in a block matching method for 

motion tracking with ultrasound images. We compared our 

results with those obtained with a classical sum of absolute 

differences (SAD) cost function. We show that with our method 

there is no need of interpolating the images. Thus, for images at 

the original resolution level, the results obtained with the 

proposed estimator are largely more accurate than with SAD. 

Moreover, we show that using SAD on images with resolution 

five times higher provide roughly the same results as with our 

method, but the processing time is ten times higher in this case. 

I. INTRODUCTION 

 Ultrasound elastography [1] is a technique of 

characterizing the elasticity of tissues. It consists in acquiring 

two or more images of the same medium under different 

levels of compression. In most static elastography 

applications the compression is applied directly with the 

ultrasound probe. Strain images are usually calculated by 

derivation of the estimated motion between the acquired 

images. Many conventional 2-D tracking techniques use 

block matching based methods to estimate this motion. 

Under small deformation, the local displacements to estimate 

are usually small compared to ultrasound images resolution. 

Thus, one of the main challenges in motion tracking for 

elastography is to find local translations estimators capable 

to estimate such displacements. Among these estimators, we 

find in the literature methods based on cost functions [2] 

such as normalized and non-normalized cross-correlation, 

sum of absolute differences, sum of squared differences. A 

comparison between these estimators applied to ultrasound 

images can be found in [3]. It can be easily seen that the 

accuracy of this type of estimator is directly depending on 

the images sampling frequency. Thus, interpolation is 

generally used to obtain sub-pixel estimation precision [4]. 

Moreover, estimators using the phase of the complex 

 
 

cross-correlation function were proposed. Thus, we can find 

in [5] a 1-D iterative phase zero estimation. Extensions to 

two-dimensions were proposed by Sumi in [6] and [7] and by 

Ebbini in [8].    

The aim of this study is to propose a new technique of 

analytically estimating sub-sample local 2-D translations 

based on an a priori model of images. The proposed 

estimator is applied directly on the signals. Further, the final 

estimation, which is the relative delay between the two 

signals, is calculated as the difference between the estimation 

found for each signal. Thus, with our method there is no 

need of processing the cross-correlation function.  

As shown by Liebgott et al. in [9], non-conventional 

beamforming techniques enable access to ultrasound radio-

frequency (RF) images with lateral modulations. This allows 

us to consider that images can locally follow the 2-D signal 

model presented in this paper, based on a product of two 

sinusoids. Phase adjustment between measured phases of two 

single-orthant analytical signals and their theoretical forms is 

then achieved using least squares method. Thus, a system of 

two equations is found and allows us to analytically calculate 

the estimation of the 2-D translations. We show how our 

estimator can be used to estimate 2-D translations with a 

block matching method. The results presented are considered 

with experimental images on phantom. The performances of 

the proposed estimator are compared to classical SAD cost 

function. We show that with images at the original resolution 

our estimator is more accurate. Moreover, motion estimation 

with SAD applied on images interpolated by a factor of five 

in both directions was processed. In this case, the estimation 

accuracy is roughly the same as with our estimator applied 

on the original images, but the computation time becomes 

ten times higher. 

II. SIGNAL MODEL 

In this work, the proposed method estimates the 2-D 

translations vector ( )
T

1 2d ,d=d considering the 2-D function 

2r : →� �  given in (1). 

 

),())(2cos())(2cos(),( 2211 nmwdnfdmfnmr ⋅−⋅−= ππ

 

(1) 

Two-dimensional least-squares estimation for motion tracking in 

ultrasound elastography 

Adrian Basarab
1
, Pierre Gueth

1
, Hervé Liebgott

2
, Philippe Delachartre

1
 

CREATIS, CNRS UMR5220, Inserm U630, INSA-Lyon
1
, Université de Lyon, Université Lyon1

2
, F-69621, 

France 

 

Proceedings of the 29th Annual International
Conference of the IEEE EMBS
Cité Internationale, Lyon, France
August 23-26, 2007.

FrP1B6.1

1-4244-0788-5/07/$20.00 ©2007 IEEE 2155



 

 

 

where f1 and f2 are the normalized frequencies on the two 

main directions of the signal r, m and n are the variables of 

each dimension and w(m,n) is a 2-D window defined 

arbitrarily and having its Fourier spectrum disjoint from the 

spectrum of the 2-D cosinusoid.  

Let us define by small letters signals in the spatial domain 

and by capital letters their 2-D Fourier transform. Thus, we 

can define two analytical signals [10], noted r1(m,n) and 

r2(m,n), and which 2-D Fourier transforms are calculated as 

follows. 

 

),())sgn(1())sgn(1(),( 2121211 uuRuuuuR ++=  (2) 

),())sgn(1())sgn(1(),( 2121212 uuRuuuuR +−= , (3) 

 

where the couple (u1,u2) is the 2-D variable in frequency 

domain. 

Analytical calculations show that, given the form of signal 

in (1), the phases of the two analytical signals r1 and r2 have 

the form:  

1 1 1 2 2( m,n ) 2 f ( m d ) 2 f ( n d )π πΦ = − + −  (4) 

2 1 1 2 2( m,n ) 2 f ( m d ) 2 f ( n d )π πΦ = − − + −  (5) 

III. LEAST SQUARES ESTIMATION 

Given the linear phases in (4) and (5), we use a least 

square method to estimate d1 and d2. The two expressions in 

(4) and (5) lead to the data model in (6). 
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where 1φ  and 2φ  are the measured phases of the two defined 

analytical signals r1 and r2. 

In the linear model in (6), y and H are known exactly and 

our objective is to minimize the square error between d and 

the estimate of d, noted ( )
T

1 2
ˆ ˆˆ d ,d=d . In the literature, it is 

shown that among all possible unbiased estimators the least 

squares estimator (LSE) minimizes the variance [11]. The 

solution given by the LSE is [12]: 

 

( )
-1

T Tˆ = H H Hd y , 
(8) 

where by T)(⋅ we denote the transpose of a matrix. 

We can easily show that in our case the matrices H and H
T
 

are invertible, which let us simplify the expression in (8).  

 
1ˆ H −=d y  (9) 

 

The result in (9) gives the form of our estimations: 
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In practical applications we do not use only one measure 

of phases ),(1 nmφ and ),(2 nmφ , but a series of measures 

which lead us to consider ],[ 21 MMm ∈ and ],[ 21 NNn ∈ . In 

this case, the final estimation is the mean value of the 

estimations corresponding to each measure. Estimations in 

(10) become: 
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A statistical study of our 2-D estimator can be found in [13].  
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IV. APPLICATION 

A. RF image formation 

We presented in the previous section a method of 2-D 

translations estimation using the signal model in (1). In order 

to apply our estimator to ultrasound RF images, we use a non 

conventional beamforming technique which allows images to 

follow our signal model. Note that conventional images 

present oscillations only in the direction of ultrasound wave 

propagation, which we call axial direction. Therefore, 

oscillations in the lateral direction of the images are 

necessary to allow the 2-D local model approximation in (1).  

Lateral oscillations are obtained by the beamforming method 

discussed by Liebgott et al. in [9]. This method is based on 

the Fourier relation between the lateral profile of the acoustic 

pressure field and the weighting function applied to the 

active part of the ultrasound array in receive. The 

beamforming method was implemented on the research 

scanner Sonix RP by Ultrasonix Medical Corporation, 

Canada, with a 8-MHz linear. 

Figure 1 shows the experimental point spread function 

(PSF) that we get using this beamforming technique and its 

corresponding profiles. The lateral and axial profiles of the 

PSF confirm the interest of using this beamforming method 

in obtaining images following controlled models in both 

spatial directions. Note that the frequencies in (1) are 

depending on the characteristics of the PSF, which allows us 

to consider them known in the estimation method 

( 1 1

1 2f 5.5mm , f 0.57mm− −= = ).     
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Figure 1. Experimental point spread function corresponding to ultrasound RF images with lateral oscillations and two axial 

and lateral profiles, corresponding to the two dashed lines  

 

 

B. Results 

With ultrasound elastography, strain images are usually 

calculated by derivation of the estimated displacement 

induced by a compressive force applied to the tissue surface. 

The most widely used technique of 2-D motion estimation 

for ultrasound elastography is speckle tracking, known as 

block matching in video applications [14]. 2-D translations 

are then locally estimated using classical research criteria as 

normalized cross-correlation (NCC) or sum of absolute 

differences (SAD). In ultrasound elastography, images 

resolution and the way of applying the deformation directly 

with the ultrasound probe make the local displacements 

small and often smaller than the pixel size. Thus, in order to 

estimate sub-pixel displacements, classical block matching 

requires that images be interpolated.  

We use here the estimator described in the previous 

sections to estimate sub-pixel 2-D translations without 

interpolating the 2-D signals. The results are compared to 

those obtained using SAD cost function.  

The experimental result we present in this paper is 

considered with phantom data. The phantom (Elasticity QA 

Phantom, model 049, by CIRS Tissue Simulation & Phantom 

Technology, USA) was designed for ultrasound elastography 

and presented a spherical 20-mm diameter inclusion of 6 kPa 

for a surrounding medium of 29 kPa. The ultrasound RF 

images were acquired and formed using the beamforming 

method described previously. Note that the inclusion is 

clearly visible on the strain images, figures 2 (b), (c) and (d), 

whereas it is not the case on the ultrasound image. On strain 

images the inclusion is the region which is the most 

deformed, as it is softer that the other parts of the phantom. 

The displacement corresponding to the strain image in figure 

2(b) was estimated using the proposed estimator applied on 
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the images at the original resolution. Figures 2(c) and 2(d) 

are obtained using a classical estimation with SAD cost 

function applied on the original images and respectively on 

the images interpolated by factors of five in both directions. 

Note that if the computation time is roughly the same to 

obtain results in figures 2(b) and 2(c), the estimation time for 

the result in figure 2(d) was ten times higher. The ultrasound 

B-mode image in figure 2 (a) was calculated by axial 

demodulation of the RF image. 
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(a) (b) (c) (d) 

Figure 2. Estimated motion vectors with the proposed estimator superimposed on the experimental ultrasound B-mode 

image (a) and axial strain image in % (b) with our estimator using the original images, (b) with SAD using the original 

images, (d) with SAD after interpolation of the original images by a factor of 5 in both directions.  

 

V. CONCLUSION 

A new method of 2-D translation estimation based on a 

given signal model is presented. The linear phases of two 

analytical signals and a least squares estimator allow us to 

analytically estimate the local displacement. Further, the 

estimator is integrated in a block matching method and used 

for motion tracking with non-conventional ultrasound RF 

images. Indeed, a special beamforming technique gives the 

possibility to have RF images locally following the proposed 

2-D signal model.  

An application on motion tracking for ultrasound 

elastography is considered. It shows that our estimator gives 

also good results for low resolution images. Further, we 

compare our results with a conventional SAD cost function 

applied on original data and on images oversampled by 

factors of five in both directions. Thus, we show that for the 

original resolution level our estimator is largely more 

accurate than the classical SAD. To achieve roughly the 

same accuracy with SAD as with our estimator applied on 

the original ultrasound data, an interpolation of the images 

by a factor of five was processed, but in this case the 

computation time becomes ten times higher. 
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