
 
 

 

  

Abstract — This paper presents a method for geometrical 
and time-delay auto-calibration of an ultrasonic computed 
tomography (USCT) system. The algorithms used for the 
calibration are based on the principles similar to the global 
positioning system (GPS) navigation. Ultrasonic transmitters 
and receivers in USCT can be viewed like satellite transmitters 
and mobile receiver units in GPS. However, unlike in GPS, 
none of the positions of the transmitters or receivers in USCT 
are assumed to be known and all are the to-be-calibrated 
unknowns. The presented method is capable of calibrating the 
positions of all ultrasonic transducers and their individual time 
delays at once. No calibration phantoms are necessary. 

I. INTRODUCTION 
LTRASONIC Computed Tomography (USCT) is an 
imaging modality currently under development. It is 

primarily aimed at breast cancer diagnosis. The imaged 
object is placed in a tank filled with water as a coupling 
medium, and surrounded with several thousands of 
ultrasonic transducers. Each of these transducers is used for 
either transmitting (sender) or receiving (receiver) ultrasonic 
pulses. The recorded signals, so called A-scans (Figure 2), 
can then be used for reconstruction of tomographic images 
of the object [1][6]. 

A 3D setup for USCT is currently developed at 
Forschungszentrum Karlsruhe (FZK), Germany [1]. The 
system (Figure 1) consists of 384 senders and 1536 receivers 
mounted on 48 exchangeable transducer array systems 
(TAS). The cylinder which holds the TASes can be rotated 
in 6 steps to achieve a total of 11,520 virtual transducers, 
which can produce approximately 3.5 million A-scans. The 
transducers’ mean frequency is 2.7 MHz and the A-scan 
signals are sampled at 10MHz. A complete system scan 
produces about 20GB of data.  

For the reconstruction of tomographic images, it is crucial 
to know the positions of individual transducers accurate 
within the order of a wavelength. An estimate of the 
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positions can be made based on the dimensions of the 
TASes and the cylinder to which they are fixed. But even 
small positioning errors 
(in the range of tenths of 
millimeters) can lead to 
significant degradation 
of image quality. With 
respect to the number of 
transducers in the 
system, it is impractical 
to measure the distances 
between them manually.  

We propose an auto-
calibration technique, 
which utilizes only the internal ultrasonic signals produced 
by the system to solve the calibration problem. The 
technique is based on the same principles as the GPS 
navigation. Essentially, the ultrasonic signals and 
particularly the time-of-arrivals of individual ultrasonic 
pulses are used for a triangulation. The triangulation is 
formulated as a minimization problem, where the to-be-
minimized quantity is the sum of squares of differences 
between a measured and an estimated pulse arrival time. The 
unknown minimization parameters are the positions and 
individual time-delays of transducers. 

A similar approach can be seen in the calibration of an 
underwater ultrasound imaging system [2]. Here, the authors 
relied on the presence of a high precision positioning device 
with an attached hydrophone. The knowledge of the 
transmitting hydrophone positions provides a reference 
coordinate system to the calibration, just like in GPS, where 
the orbits of the satellites can be very accurately calculated. 
In our approach, however, the positioning device is not 
needed, and all positions and time delays (both the senders 
and receivers) are the unknown parameters. Also, there is no 
need for any sender-to-sender and receiver-to-receiver 
distances to be known. 

II. THE USCT CALIBRATION METHOD 
For the USCT calibration, a so-called empty measurement 

has to be made. In such a measurement, the tank is filled 
only with water. Each sender is excited to produce an 
ultrasonic pulse wave, which travels through the water and 
reaches all receiving transducers. Each of the receivers 
records an A-scan signal (Figure 2). The complete 
measurement consists of consecutively firing all senders 
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(one sender at a time). 
In each A-scan, several pulses can be detected. The first 

corresponds to the direct path of the ultrasound wave from 
the sender to the receiver, whereas later pulses correspond to 
paths with reflections from the tank walls or the water 
surface. By detecting the position of the first pulse, we 
obtain a so called time-of-arrival value (TOAs,r) for a 
particular sender-receiver combination. The time-of-arrival 
can be expressed as a function of sender and receiver 
positions and time-delays, which are introduced by the 
electronics processing the signals on both sides:  
 rsrsrsrs TOFTOA ,,, εττ +++=  (1) 
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222

,, )()()( −+−+−== (2) 
where, TOFs,r is the time-of-flight of the pulse from sender s 
to receiver r, τs and τr are the sender and receiver time 
delays, ε is the measurement noise, rs,r is the distance from 
the sender to the receiver, v is the actual speed of sound, and 
xs, ys, zs and xr, yr, zr are the position coordinates of the 
sender and the receiver, respectively.  

Equations (1) and (2) are very similar to the so-called 
pseudorange equations used in GPS [3], where the time 
delay components are analogical to the satellites’ and 
receivers’ clocks offsets. There is a major difference, 
though, in the fact that in the USCT, neither the sender nor 
the receiver positions and delays are assumed to be known. 
The only known parameter is the speed of sound in water v, 
which can be very accurately calculated if the temperature is 
known [4]. 

Similarly as in the case of GPS, we can solve for the 
unknown positions and delays using a nonlinear least 
squares approach which minimizes the sum of squares of 
differences between the measured and estimated time-of-
arrivals.  For this we need to introduce a set of initial 
position and delay estimates (sender: xs,0,  ys,0, zs,0, τs,0 and 
receiver: xr,0,  yr,0, zr,0, τr,0) and estimate-errors (sender: Δxs, 
Δys, Δzs, Δτs and receiver: Δxr, Δyr, Δzr, Δτr). The correct 
positions and delays are then given by the sums: 
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By substituting the above into (2) and expanding it into a 
Taylor series (up to the 1st order) we obtain a linearized 
approximation of the time-of-flight values (3) (see bellow), 
where  
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is the sender-receiver distance estimate. By substituting (3) 
back into (1) we can formulate the overall difference 
between the estimated and detected time-of-arrival of each 
pulse (4) (see bellow). 

We can now arrange a set of equations (4) (one for each 
sender - receiver combination) into a matrix representation: 
 JΔx = r, (5) 
where   Δx = [Δxs1, Δys1, Δzs1, Δτs1 … ΔxsN, ΔysN, ΔzsN, ΔτsN,  
                    Δxr1, Δyr1, Δzr1, Δτr, … ΔxrM, ΔyrM, ΔzrM, ΔτrM]T 

is the vector of the unknown estimate-error components,  
r = [ΔTOAs1,r1 … ΔTOAs1,rM, ΔTOAs2s,r1 … ΔTOAsNs,rM ]T 

is the vector of time-of-flight residuals (differences of 
estimated and detected TOAs), and J is the system matrix 
consisting of the first-order Taylor series components (the 
fractions on the right side of (4)). Note that J is actually a 
Jacobian matrix as its cells are equal to the partial 
derivatives of the TOAs,r functions. 

In order to obtain the vector of the unknown sender and 
receiver positions and delays 

x = [xs1, ys1, zs1, τs1 … xsN, ysN, zsN, τsN,  
xr1, yr1, zr1, τr1 … xrM, yrM, zrM, τrM]T,  

we can repeatedly solve the linearized overdetermined 
system in the least mean squares sense:  
 Δxk = (Jk

TJk)-1Jk
Trk  (6) 

where T denotes transpose, -1 matrix inversion, and k is the 
iteration number. After each iteration, the vector of estimate 
values is updated: 
 xk+1 = xk +Δxk (7) 
For the next solution of (6), the new estimate (7) is used to 
calculate the residual rk+1 and the Jacobian Jk+1. Note that 
the above iteration scheme is actually equivalent to the 
Gauss-Newton method, in which the product of the 
Jacobians JTJ (as in (6)) is used to approximate a generally 
nonlinear Hessian matrix H, and any higher order terms are 
neglected. This approximation is very efficient but is only 
valid if the first estimate of unknowns is close enough to the 
correct solution and the residuals are close to being linear (at 
the estimate point) [5]. If that is not the case, the Gauss-
Newton method might diverge, and it is better to use the 
Levenberg-Marquardt method which is a blend of the 
Gauss-Newton and the gradient descent methods. For the 
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Figure 2: The USCT system (a view from the top) 
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Levenberg-Marquardt method, the estimate is iteratively 
updated by 
 Δxk = (JTJ + λdiag[JTJ])-1Jk

Trk  (8) 
 where λ is a parameter controlling the inclination of the 
method either towards the Gauss-Newton solution or 
towards the gradient descent. λ is some small number 
greater than zero, and is chosen heuristically [5]. 

III.  NUMERICAL ANALYSIS 
In order to solve the nonlinear problem by either of the 

two methods, we have to introduce some constraints 
otherwise it will not converge. We are trying to find the 
positions and delays of the transducers based only on the 
measurements of their relative distances, in the lack of any 
reference (as defined by the known positions of satellites in 
the GPS case), which would give some information on the 
position and orientation of the USCT transducers relative to 
a coordinate system. If we suppose one correct solution of 
the equation system (the correct positions of all transducers) 
we could translate or rotate these positions (all at once) in 
any direction and under any angle and still obtain a correct 
solution of this equation system. Even though the system is 
heavily overdetermined (the ratio of number of equations to 
the number of unknowns is in hundreds), the system is rank 
deficient (6 less than full rank – one for each degree of 
freedom) and has therefore an infinite number of correct 
solutions. 

We can constrain the system to yield one possible solution 
by introducing virtual “anchors”. In many calibration 
techniques, anchors are typically referred to as nodes of 
known positions – reference points. Although we are not 
sure where our transducers lie, we can simply set (anchor) 
the position of one transducer s1 to an unchangeable value 
(for example into the origin of the coordinate system: 
s1:{0,0,0}). We can do this by setting the x, y, and z 
coordinates of s1 to zero in the first estimate x0. To insure 
that the position of s1 is not altered by the least squares 
solution, we must add an equation, one for each coordinate, 
expressing the stability of the solution with respect to each 
error component of s1: Δxs1 = 0, Δys1 = 0, Δzs1 = 0. This can 
easily be done by adding 3 rows to the Jacobian matrix with 
all components equal to zero except those matching x, y and 
z error components of s1. 

Now, if we imagine the correct positions of the 
transducers again (having in mind, that we have anchored 
one transducer to a fixed position) we cannot translate the 
USCT system anymore, but we still can rotate it about this 
anchor point. Therefore, other transducers should be 
anchored. But by anchoring another transducer to a 
particular position we introduce a systematic error, because 
the correct position is not known. Instead we anchor only 
two out of the three coordinates s2:{xconst, yconst, z}. This way 
the distance between s1 and s2 can still be adjusted by 
solving the least squares problem, but the overall variability 
of the rest of the transducers is constrained at the same time. 

To stabilize the solution completely, we need to choose one 
more transducer, and anchor the remaining variable 
coordinate of s2, s3:{x, y, zconst}. The anchoring can also be 
seen as choosing one particular coordinate system (out of an 
infinite number of possible systems) in which we solve the 
calibration problem. 

IV. SIMULATION RESULTS 
In order to verify the method, a simulation study was done  

consisting of setting up a virtual model of the USCT system. 
64 senders and 128 receivers were taken into consideration 
(about 1/10 of the actual numbers). This resulted in 
(64 + 128) 4 = 768 unknown parameters (3 position 
coordinates and 1 delay each) and 64 · 128 = 8192 
independent TOA measurements. The simulation was 
carried out in Matlab. To solve the matrix inversions in the 
least squares problem (5), the QR-decomposition with 
pivoting (implemented in the Matlab’s backslash operator) 
was used. 

At first, the size of the convergence region was tested. 
The initial estimate values were derived from the set of 
simulated ground truth position- and delay values by 
introducing an estimate error of various magnitudes. The 
process of solving for the unknowns iterated 15 times. 
Noise-less measurement was assumed at first. The results 
can be seen in Figure 3. The convergence region is 
surprisingly large – in the magnitude of the diameter of the 
USCT system (20 cm). This means that in the absence of 
noise, a large error in the first estimate is acceptable. The 
error minimum is limited by the used data type (Matlab’s 
double-precision floating point). Both the Gauss-Newton (6) 
and the Levenberg-Marquardt (8) methods yielded almost 
identical results. 

 

 
Figure 3: Convergence region analysis. The plot shows the calibration 
accuracy (RMS of the estimate errors) for different starting estimates. The 
standard deviation of the initial estimates is given in the legend (in meters). 
No measurement noise is assumed. The vertical axis represents the accuracy 
of the calibration (in meters); the horizontal axis gives the number of 
iterations. 
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The second part of the simulation consisted in the 

introduction of measurement noise, i.e. the inaccuracy of the 
pulse detection was included into the model. It can be seen 
(Figure 4) that in order to satisfy the needs of the USCT 
reconstruction (transducer position accuracy within a tenth 
of a millimeter), the pulses must be detected with an error 
under 10-7s (corresponding to 1/3 of the wavelength in the 
current setup). Again both methods (6) and (8) produced 
very similar results. 

 
Figure 4: Noise effects analysis. This plot shows the calibration accuracy 
(RMS of the estimate errors) for different values of measurement noise 
(pulse detection inaccuracies). The standard deviation of the inaccuracies is 
given in the legend in seconds. The accuracy of the starting estimate is 10-2 
m. The vertical axis represents the accuracy of the calibration (in meters); 
the horizontal axis gives the number of iterations. 
 

The outcome of the simulated USCT calibration can be 
seen in Figure 5, where the positions of individual 
transducers are shown in 3D scatter plots. It can be seen that 
the calibrated transducers are equally distributed on the 
surfaces of the TASes forming a cylindrical outline of the 
USCT tank, as it was modeled in the simulation (only every 
second TAS from the top TAS layer was part of the model). 
The first estimate had an RMS error of σ = 10-2 m, and the 
measurement noise standard deviation was σ = 10-7 s. 
Although the fit to the ground-truth is not perfect, the 
differences are too small (compared to the overall 
dimensions) to be seen. 

V. CONCLUSION 
A new method was developed for the calibration of a 

USCT system. For its flexibility, the GPS navigation 
principle was used as a resource for our method. The main 
extension over GPS is that neither the transducers nor the 
receivers are assumed to be in known positions and all are 
calibrated at once. The calibration is self-contained – no 
additional calibration phantoms, high precision positioning 
devices, etc, are needed. The accuracy of the calibration is 
primarily limited by the accuracy of the signal detection. 

In the near future, we plan to evaluate the method on real 
USCT data.  
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Figure 5: Two 3D scatter plots with positions of individual transducers 
before (top) and after calibration (bottom). 
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