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Abstract— An electrocardiogram (ECG) is an important and
commonly used diagnostic aid in cardiovascular disease diag-
nosis. Physicians routinely perform diagnosis by a simple visual
examination of ECG waveform shapes. In this paper, we address
the problem of shape-based retrieval of ECG recordings, both
digital and scanned from paper, to infer similarity in diagnosed
diseases. Specifically, we use the knowledge of ECG recording
structure to segment and extract curves representing various
recording channels from ECG images. We then present a
method of capturing the perceptual shape similarity of ECG
waveforms by combining shape matching with dynamic time
warping. The shape similarity of each recording channel is
combined to develop an overall shape similarity measure be-
tween ECG recordings. Results are presented that demonstrate
the method on shape-based matching of various cardiovascular
diseases.

[. INTRODUCTION

An electrocardiogram (ECG) is an electrical recording of
the heart that depicts the cardiac cycle. It is routinely used
as a first course of choice in diagnosing many cardiovascular
diseases. A normal ECG waveform (in lead II) has a char-
acteristic shape indicated in Fig. 1b. The segment labeled P
represents the phase of atrial depolarization/contraction when
deoxygenated blood enters the heart from the right atrium
and oxygenated blood enters the heart from the lungs into the
left atrium (Fig. 1a). The QRS segment represents the phase
of ventricular depolarization/contraction when blood enters
the right and left ventricles for ejecting into the pulmonary
artery and Aorta respectively. Finally, the T segment repre-
sents ventricular repolarization where the ventricles relax to
allow the cycle to begin again. Many disturbances in the heart
function show as characteristic variations in the sinus rhythm
waveform of Fig. 1b, and can be used as cues to diagnose the
disease. Fig. 1c shows such a modification in the ECG due
to premature ventricular contraction, where the heart skips a
beat only to beat very strongly in the next, causing a missed
R segment. Physicians routinely make diagnosis by a simple
visual examination of these ECG waveform. It is common
knowledge to physicians that patients with the same disease
have similar-looking ECG shape in the relevant channels.
Examples of such similarity can be seen from Fig. 2 which
shows ECG recording of several patients all diagnosed with
bundle branch block.

The goal of this paper is to capture this fundamental
intuition used by physicians in a computational algorithm for
finding shape similarity of ECG recordings. We will handle
both digital ECG recordings as well as scanned paper ECGs
using novel image processing techniques. Specifically, we
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Fig. 1.  Tllustration of the Electrocardiogram and its variations under
a disease. (a) The heart cycle. (b) A normal ECG. (c) An abnormal
ECG showing premature ventricular contraction. Sources: (a) Wikipedia
Commons, under GNU Free Documentation License, (b) Wikipedia, in public
domain.

use the knowledge of ECG recording structure to segment
and extract curves representing various recording channels
from ECG images. We then present a method for capturing
the shape similarity of ECG waveforms by modeling the
morphological variations in ECG shapes for the same disease
as a constrained non-rigid translation transform. This non-
rigid alignment transform is recovered using a variant of
dynamic time warping that explicitly accounts for missing
and spurious fiducial features in ECG images. Results are
presented that demonstrate the effectiveness of the method
in retrieving matching ECGs depicting the same disease from
a large database of ECG recordings.

The paper makes several novel contributions. First, while
most existing work has addressed the problem of analyzing
the ECG of a single patient, we focus on the problem of
searching for matching ECGs from a database. As such,
it is the first practical application of content-based retrieval
techniques for diagnosis validation during decision support.
Next, our system caters to both scanned and digital ECGs.
Finally, our ECG waveform digitization algorithm is fully
automatic and does not need operator intervention to set
system parameters.

The rest of the paper describes our approach in detail.
In Section II, we discuss related work in ECG analysis. In
Section III, we describe extraction of ECG waveforms from
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Fig. 2. Tllustration of similarity of ECG shapes for similar diseases.

ECG images. Sections IV and V present our shape matching
algorithm. In Section VI, we present results demonstrating
its use for shape-based retrieval of similar ECG images to
infer the similarity of diseases.

II. RELATED WORK

A number of research and commercial systems exist for
digitizing ECG waveforms on hardcopy printouts [18], [5],
[13], [12], [14], [15], [16], [4]. They typically start by
detecting the ECG waveform and separating it from the back-
ground grid, usually via color segmentation or a morpholog-
ical operator [12]. Once detected, the waveform pixels are
thinned [5], if necessary, and traced using line tracking [14]
or more advanced model fitting such as snakes [4]. The
greatest limitation of existing approaches is the need for man-
ual intervention, especially to locate bounding boxes around
the lead waveforms. Lobodzinski, et al.’s ECG waveform
recognition technique [14] includes templates for parsing the
ECG page, although it is unclear from their description if this
includes automatic lead extraction.

There are a number of algorithms available for single
ECG analysis [3], and for ECG classification based on neural
network [11], expert and fuzzy expert systems [9], machine
learning methods, wavelet transforms [8] and genetic algo-
rithms. However, very little work has been done to date in
automatic search of similar ECGs and using it to infer disease
similarity. The rule-based methods rely on the accuracy of
the P-Q-R-S-T segment detection [3]. Errors in estimation of
these feature values can cause major errors in disease-specific
interpretation. Further, in order to distinguish combinations
of diseases, a finer shape analysis of the ECG waveform may
be required. The parametric modeling methods, on the other
hand, are good at spotting major disease differences but can’t
take into account fine morphological variability due to heart
rate (e.g. ventricular vs. supra-ventricular tachycardia) and
physiological differences. Related work in the time alignment
of ECGs also exists. Dynamic time warping has been a
popular technique in ECG frame classification [10], and
more recently, in the recognition of heart beat patterns for

synthetically generated signals [17]. In all such alignments,
however, the amplitude of the signal was used rather than
a detailed modeling of the shape. Moreover, the DTW
algorithm used did not explicitly model the morphological
changes in the signal across patients with similar diseases as
it does not take into account missing and spurious fiducial
features during alignment.

ITII. EXTRACTION OF ECG SHAPES FROM
IMAGES

Although most hospitals now have digital ECG recorders,
much of the legacy ECG data is still in paper form, inacces-
sible to analysis by computer. Unlocking these ECG records
printed on paper and exposing them to digital analysis
would be useful. It provides additional data for current ECG
analysis techniques, as well as historical data to be used
for comparative studies. For instance, the Framingham Heart
Study [2] has been collecting ECG data since 1948, with
the data collected before 1990 in hard-copy form. Statistical
or search-based ECG analysis techniques that require large
ECG databases can be populated with such samples of legacy
data. Therefore the analysis of paper ECG may still be
relevant for disease-specific retrieval.

We now describe the extraction of ECG waveforms from
the scanned ECG images. Processing consists of three steps
(a) background removal, (b) lead segmentation, and (c) ECG
waveform extraction.

A. Preprocessing

ECG images, scanned at a resolution of 600 dpi, capture
the waveform trace at a good thickness, usually about 4
pixels. Also, due to the limited number of colors in the
image, the foreground can be easily segmented from the
background grid using the intensity histogram. Fig. 3b shows
the result of this pre-processing of the ECG image shown
in Fig. 3a (only a portion of the scanned image is shown
for brevity). Notice that this operation retains both the ECG
waveforms as well as the lead annotation which will be used
for lead segmentation described next.

B. Lead segmentation

The ECG image records all 12 channels or lead recordings
by interlacing 3 second intervals from combinations of leads
per row as seen from Fig. 4. They always occur in the same
order (first row: I, AVR, V1,V4, second row: II,AVL,V2,V5
and third row: II[L,AVE,V3,V6) all occurring aligned in
columns. Since different diseases manifest differently in each
of the leads (for example, lead V1 shows hypertrophy more
clearly than in other leads), it is important to isolate the
different leads from the ECG image. Because the lead labels
in ECG recordings are placed in fixed positions relative to
the channel recordings, we can locate them using normalized
correlation with local templates. As the scanned images are
large (5000 x 4000 pixels), and since grey-level correlation
is more robust than binary correlation, we smooth the back-
ground subtracted image using a Gaussian pyramid [6]. If
the scanner dpi is known, the scale can be set to directly
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Fig. 3. Illustration of the pre-processing for ECG waveform extraction.
(a) ECG image showing a 12 channel recording. (b) processed image after
background subtraction.
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Fig. 4. ECG waveforms extracted from the image of Fig. 3a for all 12
recording leads.

compute the proper pyramid level for correlation. Otherwise,
a coarse-to-fine search is performed over the pyramid levels
with the lead templates.

To increase the accuracy of template matching, we match
the templates in order of their character size starting from
the distinctive 3 character labels (AVR, AVL, AVF) to the
featureless lead label I. Since the labels appear in a grid
pattern, finding one label constrains the location of others in
the same row or column. Fig. 4 shows some detected lead
labels using red bounding boxes.

Since the labels are fixed relative to the recording chan-
nels, the ECG recordings per channel can now be segmented
relative to the location of the labels. The method is made
invariant to image rotation by measuring skew in the pattern
of detected lead labels.

C. ECG waveform extraction

After each lead position in the image is segmented, we
extract the ECG waveforms as curves in the respective image
segments. Due to noise and dropouts in the recordings,
there are often gaps which cause problems in curve extrac-
tion. Note that these recordings are actually time series or
functions of lead-voltage vs time. Thus, a general purpose
algorithm such as curve following or skeletonization, may
not enforce the constraint that a single y—value occurs for
each x position in image coordinates. In places where the
axis bifurcates or turns back on itself, a post-processing step
would be required for choosing between multiple values of
y for a particular value of x.

Since the ECG curve may be multiple pixels thick at
the scanned resolution, our curve tracing algorithm follows
the upper and lower edges of the curve. Fig. 5 depicts
these curves, y,(x) and y;(x). Our tracing algorithm uses a
first order linear filter, modeling both the position y(x) and
velocity y'(x) for each curve. To extend the curve trace from
x—1, we first use the velocity estimate to predict the current
location at x

(x=1)+y,(x—1), (1)

where y, (x) is the prediction (y; is similar). Using this
prediction to extend y,(x— 1) and y;(x — 1), we define two
search ranges centered around these values:

Yu (%) = yu

R, = [y (x)-Wy, (0)+W] )
R, = [y () =Wy (x)+W] 3)
where W is a search window. In practice, W needs to be set

large enough to handle the voltage spike at an R wave. Next,
we define

yulx) = mkny such that T(x,y) =0 “)
YERY

yi(x) = maxy suchthat T(x,y)=0 (5)
YER,

where T (x,y) is the segmented foreground image containing
the curves and lead labels. After tracing the upper and lower
envelopes of the ECG curve, y, and y;, the average (y, +
y1)/2 is used as the traced value y(x).

To provide robustness to noise and missing curve frag-
ments, we use morphological operators and a grouping algo-
rithm across the gaps. A morphological open (erode + dilate)
helps fill in holes inside the curve, and a morphological close
(dilate + erode) eliminates noise pixels near the curve. To
close small gaps, curve tracing is started using a number of
seed points along the expected ECG curve location. Gaps
are closed between pairs of consecutive fragments if the gap
is small enough (4 pixels = 10 msec). For gaps that are
larger than the gap threshold, we have found that most larger
breaks in the curve occur at the R wave, where the signal
spikes up and down. At the R wave, however, the curve is
nearly vertical, so the sampling in Equations (2)-(3) is nearly
tangent to the curve. Thus, we can handle a large fraction of
vertical dropout, as shown in Fig. 5.
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Fig. 5. Tllustration of curve tracing across gaps in ECG images. Upper
and lower bounding curves of the ECG, y, and y;, are shown in green and
red. The R wave spikes show a number of gaps in the original curve that
are correctly bridged by our tracing technique.

Given the 3x4 table layout located using the lead labels,
we trace curves across all columns in each of the 3 rows.
The rectangle enclosing each table cell is used to assign curve
fragments to the corresponding voltage lead. In addition, the
bounding boxes around each lead label are excluded from
curve tracing to prevent the alteration in shape due to merger
with the lead label pixels. Fig. 4 shows the ECG curves
extracted from the scanned image of Fig. 3a corresponding to
the various leads. The blue bounding boxes show the tabular
structure used to parse the curves by lead. Once the lead ECG
waveforms are extracted, the pixels coordinates can now be
expressed as a one-dimensional time series. The next section
describes the matching of these time series.

IV. MODELING SHAPE VARIATIONS OF ECG

We now turn to the problem of matching the ECG wave-
form shapes. As described in Section I and as seen from
Fig. 2, patients with the same disease label have similarities
in their ECG. This observation of similarity, however, is after
factoring out a number of morphological variations that can
be attributed to heart rate variability, and the measurement
variability in ECG recordings that affect the amplitude levels.
Further, there seems to be a built-in tolerance to the small
relative translation of characteristic segments of the ECG
such as the PQ,R,S,T as long as the shape of these segments
is preserved. The first row of Fig. 2 illustrates this perceptual
shape similarity in ECG from channel V1 for male and
female patients all diagnosed with right Bundle Branch
Block.

A. Modeling the ECG shape variation

We begin by modeling the shape variations in ECG taken
from patients diagnosed with the same disease. Consider an
ECG g(¢) corresponding to disease X. For ease of discussion,
we assume that the relevant channel for the diagnosis of
disease X has already been pre-selected. Further, due to the
periodic nature of ECG, we assume that the duration of the
signal considered for shape matching can be restricted to
a single heart beat. Consider another ECG f(¢) that is a
potential match to g(¢) corresponding to the same channel.
The signal f(¢) is considered perceptually similar to g(¢) if

a non-rigid transform characterized by [a,b,T’] can be found
such that

|f'(t)—g(1)| <8 (6)

where |.| represents the distance metric that measures the
difference between f’(¢t) and g(z), the simplest being the
Euclidean norm and

() =af(®(t)) with ®(t)=bt+TI(r) (7)

where the [a, D] is the linear component of the transform and
I' is the non-linear translation component. The parameters a
and b can be solved by normalizing in amplitude and time.
That is, if we transform f(¢) and g(¢) such that

YA S(t) = fnin(t) g(t) = gmin(2)
f(t) B fmax(t) _fmin(t) gmax(t) _gmin(t)

then a = 1.

To eliminate solving for b, we can normalize the time
axis, so that all time instants lie in the range [0,1]. Since the
duration we are considering is a single heart beat long, the
time normalization can be easily achieved as:

fe)=Ff(t/T) and §(r)=4(1/Tz) ©)

where T; and 75 are the heart beat durations of f(r) and g(7)
respectively. With this time normalization, b = 1. Such ampli-
tude and time normalization automatically makes the shape
modeling invariant to voltage variations in ECG recordings,
as well as variations in heart rate.

Since the non-uniform translation I is a function
of t, we can recover it at important fiducial points
(features) in the normalized signals, and recover the
overall shape approximation by time interpolation. Let
there_be K features extracted from f(t) as Fx =
{(l‘],f] (ll)), (tz,fz(l‘z)), . (t[(,f]((t[())} at time {l‘] .. .t[(}
respectively. Let there be M fiducial points extracted from
g(1) as Gy = {(t'1,81(0), (12, 82(2)), . (U1, Bre (1))}
at time {r'1,t'2,...t'y} respectively. If we can find a set
of N matching fiducial points Cr = {(#;,¢';)}, then the non-
uniform translation transform I' can be defined as:

and 2(r) =

)

(®)

() = Y if r=¢; and (1;,¢';) € Cr
) o+ (ﬁ) (t—1t'y) where (t.,t'y), (t;,1')) € Cr
(10)

and t'y is the highest of #'; <t and ¢'; is the lowest of t'; > ¢
that have a valid mapping in Cr. Other interpolation methods
besides linear (eg. spline) are also possible.

Using Equations 6 and 10, the shape approximation error
between the two time series is then given by:

£ = g0)] = | FT @) - 0) an

For each g(¢), we would like to select I' such that it
minimizes the approximation error in (11) while maximizing
the size of match Cr.

Finding the best matching ECG based on shape can then
be formulated as finding the g() such that

8best = argmin f(r<t)) _g;(t) (12)

4
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while choosing the best I' for each respective candidate
match g(1).

B. Solving for T

If we consider the feature set Fx, Gy, extracted from the re-
spective time series as sequences, the problem of computing
the best I' reduces to finding the best global subsequence
alignment using the dynamic programming principle. The
best global alignment maximizes the match of the time series
fragments while allowing for possible gaps and insertions.
Gaps and insertions correspond to signal fragments from
feature set Fx that don’t find a match in set Gy and
vice versa. In fact, the alignment can be computed using
a dynamic programming matrix /4 where the element H; ;
is the cost of matching up to the ith and jth element in
the respective sequences. As more features find a match, we
want the cost to increase as little as possible. The dynamic
programming step in our case becomes:

H;_ 1,j— 1+d(f( )7 (t/j))
Hi_1,j+d(f(1),0)
lj l+d(0 g( ))

with initialization as Hoo = 0 and Hp; = o0 and H;o = o
for all 0 <i <K, and 0 < j < M. Here d(.) is the cost
of matching the individual features described in detail next.
Also, the first term represents the cost of matching the feature
point f(#;) to feature point g(' ;) which is low if the features
are similar. The second term represents the choice where
no match is assigned to feature f(ti). Fig. 6 illustrates the
accounting of insertions and gaps in the computation of the
match between the two time series.

C. Characterizing fiducial point similarity

If we regard the time series as curves, a natural choice
of fiducial points are the corners as shown by the circles
in Fig. 6. The corners can be easily obtained as the end
points of a line segment approximation to curve. The shape
information at each corner is modeled using the following
parameters

S(F(1)) = (1 F (1), 00),0(1)) (14)

where 6(z;) is the included angle in the corner at #;, and
¢ (#;) is the orientation of the bisector at corner #;. Using the

angle of the corner ensures that wider QRS complexes are
not matched to narrow QRS complex as these can change
the disease interpretation. The angular bisector, on the other
hand, ensures that polarity reversals such as inverted T waves
or change in ST elevation can be captured. We assume
(0(t;),¢(t;)) are both normalized to lie in the range [0,1]
as are #; and f(z;). The fiducial points in g(¢) can be defined
similarly. The cost function d(f(1;),g(¢' j)) is then given as
the Euclidean distance between the two fiducial points using

the 4 parameters as

d(f(6),8(1}) =

if |t;—1;| <A and
(ti—1)2 + (f(1) —8(r)) >+ Ft)—8())2 < A
(9(%)]— 0(1}))*+ J (GEt ; —ge((tj’))) <2 2
(o(1) — 9(i))? A
o(t) — (1)) < A4

o otherwise
(15)

The thresholds (A1,A,,A3,A4) are determined through a prior
learning phase in which the expected variations per disease
class is noted. The cost function d(f(z;),0) can be computed
by substituting #'; = 0,g(¢'j) =0 and 6(t';) =0,¢(¢'j) =0 in
Equation 15. The cost function d(0,g(¢';)) can be similarly
computed.

V. SHAPE MATCHING ALGORITHM

We now describe the overall shape matching algorithm to
align a pair of ECG signals extracted from the ECG images
from the same observation lead. The algorithm consists of
several steps as described below.

A. Extraction of single periods for matching

To extract the single heart beat duration, we normalize
a signal f(f) in amplitude as given in Equation 8, and
compute the autocorrelation function. As shown in Fig. 7b
the peaks in the autocorrelation function correspond to the
various periodicity patterns found in the signal. We note the
most common inter-peak duration as representative of a heart
beat duration and extract a segment of recovered duration
from the ECG signal. This segment becomes the basis of
our shape-based alignment scheme. The single heart-beat
containing region extracted using the inter-peak distance in
the autocorrelation function of Fig. 7b is shown in Fig. 7c.

The normalization of the time axis for a single heart beat
duration is performed as given by Equation 9. This ensures
that all signals being compared are one heart beat long and
have their time values range from 0 to 1.0.

The fiducial points extracted from time series are corners.
A simple line segment approximation that does a recursive
partitioning of the time series curve is used. A threshold
on minimum length = 5, and amplitude deviation of 0.01
was found sufficient to remove much of the noise while still
keeping the main P,Q,R,S, T features.
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Fig. 7. Tllustration of pre-processing steps in shape matching algorithm. (a)ECG waveform extracted from the ECG image of Fig. 3a for lead I. (b)

Autocorrelation-based period detection (the distance between the two arrows. (c) Single period extraction for matching from (b).

B. Shape matching algorithm

By selecting one heart beat interval from the original
signal, there is an initial translation bias depending on the
starting point for such interval choice. The signals as a
result may need to be circularly shifted to perform an initial
registration. As the translation required is usually much
larger than that is allowed during DTW alignment, it is
extracted separately. For this, we cross-correlate the two
signals to be matched and note the translation corresponding
to the peak as the initial translation. Since the signals are
periodic, a circular shift is performed.

Once the pair of signals are initially registered, the DTW
alignment is performed as described in Section IV-B. The
alignment transform is then used to project one signal onto
the other as given in Equation 10, and the residual error is
evaluated using Equation 11.

This pair-wise matching of single heart beat intervals is
repeated over multiple such heart beat segments over the
available data and the average residual error is used to rank
the matches. Finally, channel information from each of the
leads is combined through a winner take-all mechanism to
retain the best matching ECGs as those that match in the
highest number of channels with a score exceeding a chosen
threshold. Future work will explore other channel fusion
methods.

VI. RESULTS

We now present results of finding disease similarity by
shape matching of ECGs. We collected scanned images of
ECG from several collections including the Harvard data set
of 301 ECGs [7], and 168 ECG images scanned from an ECG
practice book for physicians [1]. In addition, we combined
the digital ECG recordings from PTB benchmark database
available from Physionet (http://www.physionet.org) which
contains 12 channel 547 ECG recordings sampled at 1000
Hz of 294 patients with diseases including those listed in
Table I, giving rise to a total dataset of size 1016 x 12 =
12,192 channels.

A. Examples

We illustrate shape-based disease similarity detection us-
ing an example in Fig. 8. Fig. 8a shows the single periods

Number Average # | Average | Average

Disease of queries matches recall precision
returned
Healthy Control 76 100.7 94.5% 71.3%
Hypertrophy 7 8.7 79.8% 67.3%
Left BBB 16 21.4 87.3% 61.6%
Right BBB 6 8.2 83.3% 62.2%
MI 362 584.2 96.2% 59.6%
TABLE I

ILLUSTRATION OF PRECISION AND RECALL FOR VARIOUS DISEASES
BASED ON ECG SHAPE MATCHING.

of ECG waveforms extracted as described in Section V-A.
As can be seen, the waveforms are similar except for a non-
rigid translation transform. This is computed using the DTW
algorithm described in Section IV-B to give an alignment as
shown in Fig. 8c. The resulting alignment of the waveforms
is shown in Fig. 8b. The improvement in shape matching
due to non-rigid DTW alignment can be clearly seen by
comparing the simple overlaid shapes in Fig. 8b. As can
be seen from Fig. 8c, the alignment is close to the diagonal
illustrating a good match.

Fig. 2 shows the results of shape-based retrieval of match-
ing ECGs from the dataset described above. The query ECG
is shown in Fig. 2, left-top and corresponds to a patient
diagnosed with Bundle Branch Block (BBB). The top 8
matches using the DTW-based shape matching algorithm are
shown in Fig. 2 ordered left-to-right, top to bottom. Upon
disease label verification, 6 of these were found to have right
BBB.

B. Precision and recall

We evaluated the precision and recall values by using
all available samples per disease as queries and retrieving
matches above a threshold of 0.4. The number of matches
retained averaged across the queries for various diseases is
shown in Column 3 of Table I. The precision and recall
values given below were averaged over the queries tested
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for the respective classes.

Number of correct matches selected

Recall = 16
total number of correct matches present (

Number of incorrect matches selected

Precision =1 —
total number of matches returned

As can be seen from Table I, the shape matching has high
recall even when the precision is not as high. On analyzing
the results, we found the precision could be improved as
the disease labels in the PTB database were sometimes
incomplete, particularly in cases where a patient has multiple
diseases and only a few of them are annotated for the
corresponding ECG.

VII. CONCLUSIONS

In this paper we have presented an algorithm for non-rigid
alignment of ECG shapes extracted from ECG recordings,
both digital and scanned paper recordings. Starting from
the key idea that patients with similar disease labels have
similarities in their ECGs, we demonstrated an algorithm for
disease similarity detection, where the precision-recall values
for different disease groups indicate the effectiveness of the
proposed algorithm.
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