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Abstract— A quasi-analytical method for the determination 
of relaxation rate distribution functions in T2-weighted MRI in 
brain is proposed. The method solves analytically the set of non 
linear polynomial equations on the assumption that the 
transversal magnetization decay in Carr-Purcell-Meiboom-Gill 
(CPMG) T2-weighted MR brain images can be decomposed in 
a finite number of  exponential decays, each one corresponding 
to a particular tissue class. The proposed method was validated 
by numerical simulations and applied to the calculation of 
relaxation rate distribution functions of tumoral lesions in 
brain. 

I. INTRODUCTION 
HE determination of relaxation rate distributions for T2-
weighted Carr-Purcell-Meiboom-Gill (CPMG) MRI has 

been previously used [1], [2], [3] for tissue classification and 
tumor segmentation, particularly for obtaining nosologic 
maps of tumoral lesions in brain [4]. Those efforts relay on 
the application of simulated annealing and Metropolis 
algorithm to perform an inverse Laplace transform on 
relaxation data and whose details are discussed elsewhere 
[1], [3]. Even though these methods are extremely precise 
and robust for the determination of relaxation rate 
distributions, they are also extremely slow and require some 
adjustments and side processes to be applicable on a patient 
basis. The decay of pixel intensity through the set of CPMG 
T2-weighted MR images can be modeled by a discrete sum 
of positive exponential functions [5]. The fact that pixel 
intensity sampling is made at equally spaced time intervals, 
transforms the initial fitting problem into a problem of 
finding the solutions of a set of non linear polynomial 

equations [6], [7]. In the present work, these equations are 
solved analytically and the solution is applied for the 
estimation of relaxation rate distributions in MR brain 
images. 
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II. MATERIALS AND METHODS 

A. Image Measurement 
Multi-echo T2-weighted images were acquired using Carr-

Purcell-Meiboom-Gill (CPMG) sequence with a total of 16 
equally separated echoes, starting at TE = 22 ms. To cover  
the totality of the tumoral lesion, images for 8 axial slices 
were obtained, each one 5 mm thick. Pixel intensity is 
generally given by 

 
( )2exp nTERpp On −=                                         (1) 

 
where R2 = 1/T2, n being the echo index and T2 the 
transversal relaxation time.  

B. The Partial Volume Problem 
A common situation in MR images is that even when they 

exhibit a very high spatial resolution axially, i.e., over the 
2D image, the spatial resolution in the longitudinal direction, 
i.e., related to slice width, could be very low. As a 
consequence, it can be assumed that there could be a mixture 
of tissues within the image voxel, i.e., a partial volume 
problem [8], [9], and in correspondence a mixture of 
relaxation rates R2. In that case the image intensity in a 
voxel can be written as  

 
( )(∑

=

−+=
N

i

i
in RTEnCbp

1
2exp )                           (2) 

 
where Ci stands for the proportion of tissue i in the voxel, 

( )iR2 represents its characteristic relaxation rate, b is a 
baseline correction to the pixel intensity and N is the 
maximum number of tissues that could be present in the 
voxel. 

C. Non Linear Polynomial Equations 
Equation (2) can be written as: 
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The equally spaced sampling of the magnetization decay 

allows for a polynomial representation of each data point 
according to (3). If it is assumed [3], [4], that at most 3 
tissues are present in each voxel; normal or unaffected 
tissue, lesion tissue and cerebrospinal fluid, CSF, a set of 
non linear polynomial equations [6], [7] can be written: 
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 Solutions to the set (0) must fulfill the following 
conditions: 
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In order to reduce the number of equations, the set (0) is 

combined in the following way: 
 

iii qpp ≡− +1                           (6) 
 
a
 
lso defining: 
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he new set can be written as: 
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The set (I) can be further reduced by combining equations 

such that the variable  is eliminated, this can be 
accomplished by the transformation: 
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A similar transformation can be applied to eliminate : 2v
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with the definition: 
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obtaining: 
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Finally, elimination of  by a similar transformation: 3w
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yields: 
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The solutions of (IV) determine a set of non linear 

algebraic equations: 
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Solutions of set (V) can be obtained as the roots of the 

cubic equation: 
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The rest of the variables can be calculated by replacing 
the solutions of (15) into the initial set (0).  

D. Simulations. 
Some considerations have to be made when applying this 

method to real data using it as an exploratory tool to 
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determine relaxation rate distribution functions: Firstly, 
pixel intensity is assumed to be composed of three 
exponential decays; this situation is not always valid since it 
depends on the actual tissue composition in the pixel and as 
a  consequence some of the roots of equation (15) must be 
either complex or negative if the actual pixel composition 
involves less than 3 tissue types or equivalently less than 3 
relaxation rates; somewhat  the assumption of forcing the 
model for the pixel intensity decay to be a  linear 
combination of 3 exponential decays leads to unphysical 
results, i.e., complex relaxation rates, when applied to real 
data. Secondly, in order that conditions (5) are completely 
fulfilled, Ci must be positive. Tests performed with synthetic 
data composed of linear combinations of up to 3 exponential 
functions demonstrated that solutions of equation (16) 
subjected to conditions (5) always yielded the right number 
of exponentials. For the simulations, a set of 3 relaxation 
rates was chosen according to those expected for tumoral 
lesions in brain [3], [4], i.e., 2 s-1 for necrosis or CSF, 7 s-1 
for tumoral tissue and 12 s-1 for normal or unaffected tissue. 
The results of the simulation assuming that each relaxation 

rate exhibits a Gaussian distribution around its mean value 
are shown in Figure 1.  

It has to be noticed that the distribution functions obtained 
by application of the method resembled quite well those 
used for the composition of synthetic data, i.e., dispersions, 
relaxation rate mean values and amplitudes are preserved. 

 

  
Fig. 2. Top, relaxation distribution function obtained for two different 
ROIs, shown on left side. The arrow indicates the position of the peak 
corresponding to unaffected tissue. Bottom, comparison of the 
relaxation rate distributions coming from different ROIs, solid line: 
ROI includes tumoral lesion completely; dotted line, contra lateral 
ROI. Images correspond to a glioblastoma multiforme. 

  
Fig. 1. Distribution functions obtained for synthetic data. Line types 
correspond to different dispersions of relaxation rates (0.1 to 0.5 s-1). 
Relaxation rates used for the simulations were 2, 7, 12 s-1, 
corresponding respectively to liquid or necrosis, tumoral tissue and 
normal or unaffected tissue [3], [4]. 

III. RESULTS 
The method was applied on CPMG T2-weighted images 

of tumoral lesions in brain. All the analyzed images were 
certified by histopathological results. 

Regions of interest covering the entire lesion were 
compared with regions corresponding to unaffected or non 
pathological tissue, i.e. gray or white matter, and CSF, in 
order to discriminate relaxation rates associated to tumoral 
tissue leading to the segmentation of tumoral lesion. An 
example of this comparison is shown in Figure 2.  

First of all, the method can be used as a tool to establish a 
correlation between relaxation rate and tissue, i.e., relaxation 
rate tissue classification, by analyzing different ROIs for 
which the tissue class is known by other means, i.e., 
stereotaxic biopsy, in vivo MR spectroscopy or nuclear 
medicine imaging, and use the correlation for the 
determination of nosologic maps with appropriate 
segmentation procedures [4]. Also, it is possible to evaluate 
the whole extension of the lesion by comparing its 
distribution function to the one obtained from ROIs 
corresponding to normal or unaffected tissue coming from 
the same patient, bottom of Figure 2. This opens the 
possibility of obtaining a sort of “lesion relaxation rate 
distribution” through a subtraction method that can be used 
for lesion evaluation. 

The method is also applied to a 3D image set to analyze 
the lesion by using a volume of interest or VOI than is 
constructed from identical ROIs taken over the stacked 
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image set. In this way, a relaxation distribution function can 
be determined for each slice, allowing for determination of 
lesion tissue heterogeneity, a result which is very helpful in 
radiotherapy treatment planning, particularly in defining the 
gross tumor volume or GTV. These results are shown in 
Figure 3. 

IV. CONCLUSIONS 
The quasi-analytical method developed in this work 

allows for a fast and reliable determination of relaxation rate 
distribution functions of tumoral lesions in brain over 2D or 
3D image sets. Compared to other methods, based on the 
inversion of data by non linear regression analysis or inverse 
Laplace transform algorithms, the proposed method is 
extremely faster but it is limited to the assumption of a small 
number of exponential decays composing the image voxel 
data, i.e., the condition number increases with the number of 
exponentials considered. Nevertheless, for the signal to 
noise ratio in images used in this work and the typical 
relaxation rates values present in tumoral lesions in brain, 
allows for the reliability of the determination. The 
application of this method to other organs should be tested 
first. Future work is addressed to overcome the numerical 
stability problem by the application of some kind of 

regularization of the data in order to open the possibility of 
its application noisy data or to other organs. An immediate 
extension, in brain, is the application of the method to 
diffusion weighted MR imaging of tumoral lesions and other 
pathologies, such as Alzheimer disease and multiple 
sclerosis, for determination of nosologic maps used in 
treatment planning and monitoring. 

  

  
Fig. 3.  Relaxation rate distribution functions from different slices (1-
8). Lines indicate the mean relaxation rate for different tissue types. 
Analysis of the relaxation rate distributions allows for tissue 
classification and composition within the 3D image set. 
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