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Abstract— Heart failure and heart valvar diseases are chronic
heart disorders which are potentially diagnosed using heart
sound characteristics. Heart sound components S1 and S2
exhibit significant characteristics for valvar dysfunction while
pathological S3 sound is a prominent sign for heart failure
in elderly people. In this paper, a new automatic detection
method of the S3 heart sound is proposed. The method is
build upon wavelet transform–simplicity filter which separates
S1, S2 and S3 sounds from background noise enabling heart
sound segmentation even in the presence of heart murmurs
or noise sources. The algorithm uses physiologically inspired
criteria to assess the presence of S3 heart sound components and
to perform their segmentation. Heart sound samples recorded
from children as well as from elderly patients with heart failure
were used to test the method. The achieved sensitivity and
specificity were 90.35% and 92.35%, respectively.

Keywords: Heart sound, Wavelet transform, Simplicity, S3
sound.

I. INTRODUCTION

Heart sound is a key signal to assess the mechanical

functional state of the heart. Its capacity to measure the

cardiac mechanical system’s state is comparable to the

electrocardiogram in assessing the cardiac electrical system.

Heart sound directly relates to the variations in pressure

during the heart cycles, to the operation of the heart valves

as well as the elasticity of the heart tissues. The timings

between its main components, its morphology as well as its

spectral content can be applied to directly estimate relevant

cardiac parameters [1][2]. One of particular interest is the

third heart sound (S3) component. The origins of the third

heart sound are still controversial. The most accepted theory

is the ventricular theory, which suggests that it is originated

by ventricular compliance related rapid deceleration of the

early transmitral flow and the associated vibration of the

entire cardiac-blood pool system. In spite of the uncertainty

regarding its geneses, the S3 sound in patients over 40

has been long regarded as a sign of ventricular dysfunction

[3][5]. In fact, S3 is highly correlated to decreased cardiac

output, reduced ejection fraction and elevated end-diastolic

pressures which are most common in Heart Failure. A pub-

lished retrospective analysis of the studies of Left Ventricular

Dysfunction treatment trial demonstrated that patients with

a third heart sound were at significant increased risk for

hospitalization as well as at increased risk due to pump

failure [4]. The third heart sound has also considerable

clinical value in discriminating among several types of heart

valve disease. For instance, it is most commonly auscultated

with mitral regurgitation.
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Fig. 1. ECG and Heart Sound showing a cycle containing components S1,
S2 and S3.

The third heart sound is characterized by a low loud-

ness, short duration and low frequency content (typically in

the range 25-70Hz)[6]. These characteristics make it very

difficult to hear using traditional auscultation devices. Its

identification typically requires high proficiency level. Due to

its clinical value as well as due to the required proficiency

for S3 inspection, automated systems for S3 identification

and characterization from phonocardiograms may be of high

value to assist general clinicians as well as in designing

systems for personal health applications in heart failure

management.

Automatic identification of S3 from phonocardiograms is

a relatively unexplored problem. In fact only few algorithms

Proceedings of the 29th Annual International
Conference of the IEEE EMBS
Cité Internationale, Lyon, France
August 23-26, 2007.

ThD01.5

1-4244-0788-5/07/$20.00 ©2007 IEEE 1277



exist for S3 detection. These approaches may be broadly di-

vided into methods that rely on the ECG as a synchronization

signal and methods that explore the intrinsic characteristics

of heart sound to identify the S3. In the former, the timing

relationship between S3 and the R peak of the ECG may

be explored. To avoid extra hardware requirements and

clumsy wiring arrangement for ECG acquisition, several

researchers have tried to identify S3 by several means of

signal processing and statistics without using ECG as a

reference. One of the recent works can be found in [7]. In

[6][8] a matched wavelet approach has been suggested for

S3 detection. In this approach, the impulse response of a

6th order Bessel bandpass filter is used due its resemblance

to S3. This impulse response is adapted in the time and

frequency domain in order to serve as the mother wavelet for

matched wavelet decomposition. In [9] recurrence statistics

are applied to derive a complexity measure in the 2D space.

Image edge detectors are then applied in order to identify the

boundaries of the S1 and S2 sound segments, which serve

as a reference for S3 identification using the timing con-

straints presented in figure 1. The claimed results are highly

promising. Unfortunately, the computational complexity and

memory requirements of the algorithm are significantly high,

hence limiting its practical usability in embedded systems

and/or real time applications. In another algorithm the S-

transform was applied to extract frequency contents of S3

sounds [10].

In this paper, we are proposing a novel method for S3

heart sound detection which exhibits low computational

complexity and, hence, has the potential to be integrated

into low power embedded systems. The heart sounds are first

processed using a wavelet transform-simplicity (WT-S) filter

in order to detect the main components of the heart sound,

i.e. S1, S2 and S3, which are less complex. The proposed

WT-S filter applies an adaptive thresholding procedure based

upon a mean square error criterion in order to separate high

complex background noise and heart murmurs (if any) from

the less complex S1, S2 and S3 sounds. The S1 and S2

sounds are recognized by high frequency signatures. Finally,

using the identified S2 sound lobes, several physiologically

inspired criteria based on timings, loudness as well frequency

content characteristics of S3 are applied to detect S3 presence

as well as their delimitation.

The paper is structured as follows: in section II the

important details of the proposed method are introduced; in

section III some preliminary results presented and discussed,

and finally, in section IV some main conclusions and future

working directions are outlined.

II. METHOD

The proposed method is composed of 3 main stages: in

the first stage, low frequency heart sound components S1,

S2 and S3 are separated from high frequency murmur and

background noise. In the second stage, S1 and S2 heart

sounds are recognized. Finally in the last step, S3 heart

sound is recognized based on previously detected S1 and

S2 sounds (see figure 2). In the next subsection the applied

simplicity measure is described. The main steps involved

in the definition and implementation of the WT-S filter are

outlined in subsection B. Finally, sections C and D present

the detection strategy employed for S1/S2 and S3 detection,

respectively.
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Fig. 2. Block diagram of the involved stages in S3 sound detection.

A. Simplicity Measurement

Simplicity is computed by the eigen value spectrum

method; being insensitive to additive noise, this technique

is found superior over autoregressive and entropy for physi-

ological signals [11]. Let x(t) be the time series representing

the heart sound signal, then a new delay vector is formed,

xi(t) = [x(t), x(t− τ), ....., x(t− (m− 1)τ))]T , where τ is

delay and T is transpose. In the application of this method,

two integer parameters (m, τ ) are important to be suitably

chosen. The application of an (m, τ) window to a time series

of N data points results in a sequence of P = N − (m− 1)
vectors. The delay vector xi ∈ Rm, i = 1, 2, ...P , is

constructed by shifting one sample time increment towards

the right in the analysis window. These sequences construct

an embedding matrix X ,

X =
1√
P
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On suitable selection of (m, τ ), the embedding matrix pro-

vides information about complexity of the heart sound signal.

This is measured by calculating the correlation matrix,

C = XT X, (2)

where XT is the transpose of the embedding matrix X .

Let D be diagonal matrix with the eigen values of C
correlation matrix sorted in descending order, i.e. D =
diag{λ1, λ2, ...λm}, where λ1 ≥ λ2 ≥ .... ≥ λm. The

diagonal matrix D is defined as singular spectrum of em-

bedding matrix X . The dynamic changes are exhibited in the

eigen value spectrum which can be measured by calculating

the entropy of the eigen values. Let H be the entropy of

the calculated normalized eigen values λ̂i
k. The entropy is

defined by,

H(i) =

m
∑

k=1

λ̂i
klogλ̂i

k, (3)

If the base of the logarithm term is taken as 2, then another

representation of complexity can be given as,

Ωi = 2H(i), (4)
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Here, the objective is to first emphasize the low complexity

(high simplicity) of S1, S2 and S3 heart sound components.

For the ease of application, simplicity is calculated for further

processing by,

Si =
1

Ωi
, (5)

The values of parameters m, τ and N are experimentally

chosen, and fixed to 10, Ts and 44, respectively.

B. Wavelet Transform - Simplicity Filter

The wavelet transform-fractal dimension based adaptive

filter was developed for the enhancement and separation of

lung sound (LS) and bowel sound (BS) from background

noise [12]. Likewise, in solving the problem of S1 and S2

heart sounds separation from the murmurs, simplicity is de-

rived using the aforementioned eigen value spectrum method

of wavelet transformed heart sound signal which enhances

the distinguishable peaks of S1, S2 and S3 sounds. It has

already been mentioned that heart murmurs and background

noise usually exhibit high frequency content which is more

complex. Therefore, S1, S2 and S3 heart sound peaks can

be peeled using an adaptive iteratively threshold.

The WT-S filter encompasses wavelet transform based on

multiresolution decomposition to initially decompose heart

sound into approximation and detail coefficients. The mother

wavelet db6 is chosen from Daubechies wavelet family due

to resemblance in shape to S1 and S2 sounds waveforms.

Subsequently, simplicity (S) is computed from the decom-

posed signal, i.e. the approximation coefficients. The S peaks

of S1, S2 and S3 are identified using an iteratively applied

threshold, which is found based upon the mean square error.

Furthermore, the suitable depth of wavelet decomposition

level is also iteratively found using the mean square error

criterion. The entire algorithm of decomposing heart sound

followed by S peak threshold identification is described in

the following few steps.

Step1: Heart sound is decomposed by wavelet transform

using db6 as the mother wavelet. Let MRDl be the lth

level decomposition, where l = 1....L, and L is the final

depth level used in filtering.

Step2: Simplicity curve of decomposed signal is computed

using the eigen value spectrum method described in the

previous subsection (see in figure3(b)).

Step3: Peaks in simplicity curve of S1, S2 and S3 sounds

are picked using the peak peeling algorithm (PPA) described

in [13]. PPA algorithm finds not only peaks of S1, S2 and

S3 sounds but also their durations. In many heart sounds

samples, S3 sounds occur relatively nearer to S2 sounds as

well as exhibit less simplicity. In these situations, peaks of S3

sounds in S curve are visible but its duration are not clearly

segmented (see in figure 5). Subsequently, S2 sound duration

become exceptionally high which is a clear sign of S3 sound

presence in the heart sound. All peaks are extracted using

PPA algorithm, in which, an adaptive threshold is computed

by employing the mean square error criterion as the stopping

criterion (see in figure 3(b)).

Step4: Two binary thresholds are constructed and applied

to the thresholded simplicity curve (SSTH l) achieved from

the previous step (see figure 3(c)), first one is SThl, which

separates wavelet coefficients that are related to S1, S2 and

S3 sounds, whereas second one, i.e. MThl, keeps wavelet

coefficients related with murmur/background noise (see in

figure 3(d, e)). These two binary threshold are,

SThl =

{

1 SSTH l 6= 0
0 SSTH l = 1

, (6)

MThl = 1 − SThl, (7)

These thresholds are multiplied with the wavelet coefficients.

The outcomes of these multiplications consist of the WT

coefficients that are related to S1 and S2 sound waveform

and the WT coefficients that are related to the presence of

murmur.

Step5: The wavelet coefficients related to

murmur/background noise are reconstructed in order

to achieve suitable decomposition depth. Let Y l
M be the

multiresolution reconstructed signal with murmurs, then

the stopping criterion is found using the mean square error

given in equation (8).

STCl =| E{(Y l
M )2} − E{(Y l−1

M )2} |< ǫ (8)

where E{.} represents expected value, and ǫ ∈ (0, 1), in this

work it is fixed to 0.1. If equation (8) is not satisfied then the

algorithm jumps to step1, and is repeated until the stopping

criterion is found. The Y 1
M is initialized with the expected

value of the original heart sound signal.

C. S1 and S2 Recognition

After separating S1, S2 and S3 sounds from background

noise/murmur, sounds are recognized based upon a high

frequency marker that we have previously introduced in [14].

This marker is physiologically motivated by the accentuated

pressure differences found across heart valves (both in native

and prosthetic valves), leading to distinct high frequency

signatures of the valve closing sounds. From the functionality

of heart it is known that S2 sounds are produced with

relatively high pressure. Hence, typically S2 sounds are

recognized using high frequency marker. The high frequency

marker can be achieved by computing Shannon energy of the

detail coefficients in the wavelet decomposed heart sound

signal (see in figure 5). Later, all heart cycles are found on

the basis of detected S2 sounds (two contiguous S2 sounds

construct a heart cycle). Since S1 sounds occur between

two consecutive S2 sounds, hence, S1 sounds are recognized

based on previously detected S2 sounds and systolic interval

regularity.

D. S3 Heart Sound Detection

The method devised for S3 detection is composed by

two main steps: (i) first the algorithms assesses if S3

components are present in the heart sound sample under

analysis. (ii) Once S3 presence has been detected, the

algorithm proceeds with to their actual identification using a

set of physiologically inspired criteria. The following steps
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Fig. 3. WT-S filter in S3 identification. (a) Wavelet-decomposition at 5
th

depth level, (b) Simplicity and iteratively chosen threshold, (c) Thresholded
highly simplicity component, (d) Binary thresholded components related to
S1, S2 and S3 sounds, (e) Binary thresholded background noise from highly
simpler low frequency heart sound, (f) S1, S2 and S3 sounds are demarcated
using STh.

summarize the procedure:

1) Availability of S3 Check: Two criteria have been

considered to check for the availability of S3 sounds in a

heart sound sample: (i) if the duration of more than 75%

of the S2 sounds exceeds 250 ms, i.e., when WT-S filter

is not able to separate boundaries of S2 and S3 sounds

as is depicted in figure 4. (ii) If more than 75% small

low complexity segments exhibiting low duration (50 ms–

70 ms) are detected in the diastolic phase (see in figure 3(f)).

2) Recognition of S3 Sounds: S3 heart sounds are charac-

terized by low loudness, small duration (typically betweeen

40 and 60 ms), low frequency range (typically between 25

and 70Hz) and their diastolic nature, i.e. the S3 sound tend

to originate around 150 ms after the onset of the A2 (aortic

component of the S2 sound). Using these properties the
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Fig. 4. An example of mitral regurgitation heart sound. (a) Wavelet-
decomposition at 3

rd level depth, (b) Simplicity curve and iteratively chosen
threshold, (c) S1, S2 and S3 sounds are demarcated using STh.

following validation criteria are defined in order to identify

S3 sounds:

• Loudness of S3 sounds are usually very low compared

to S1 or S2 sounds. Given a low complexity sound

component, in order to be considered as a S3 sound

it has to verify the inequality in equation 9.

(loudness)S3 <
1

3
(loudness){S1,S2} (9)

• Due to falling between low frequency range (25–70 Hz),

S3 heart sounds exhibit high simplicity. It is noteworthy

that S3 sounds are found exhibiting more simplicity than

S1 and S2 sounds, i.e. SS3 > S{S1,S2}.

• The time interval between the onset of the S3 sound

and the onset of the preceding S2 sound facilitates

verifying S3 sounds. As it has already been mentioned

this interval (tint) has to verify (120 ms < tint <180

ms).

• Finally, the duration criterion of the S3 sounds is

verified using the aforementioned range, i.e. 40–60 ms.

III. RESULTS AND DISCUSSION

Heart sound samples were collected in the Cardi-

ology Section at the University Hospital of Coimbra

from January 2007 to March 2007, under the guid-

ance and instructions of an experienced cardiologist.

Two heart sound samples were collected from http:
//www.egeneralmedical.com/listohearmur.html. The col-

lected heart sound database includes sounds from children

as well as heart sounds obtained from patients with heart

failure. During acquisition, patients were asked to maintain

silence and to make the least possible physical movements

in order to maintain the integrity of the heart sound samples.

Recording was performed with an electronic stethoscope

from Meditron. The stethoscope has an excellent signal to
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noise ratio and extended frequency range (20 - 20,000 Hz).

Although ECG is not considered in the present work, it

was also recorded simultaneously to assess the segmentation

efficiency of the algorithm. Heart sounds were digitized using

a 16-bit ADC at 44.1kHz sampling rate. Sound samples

were recorded for the maximum duration of one minute. All

collected heart sounds were first preprocessed using a 4th

order Butterworth high pass filter with cut-off frequency of

25 Hz in order to eliminate low frequencies produced by

muscle and stethoscope movements.

TABLE I

SOME RESULTS OF S3 HEART SOUND IDENTIFICATION.

Patients Detected Not-detected Wrong-detected
Heart Failure 60 5 3
Mitral Regurgitation 8 0 0
Children 35 6 5

The proposed method was tested with 5 heart sound

samples. The prepared database includes heart sound samples

of 2 children, 2 heart failure adult pateints and one patient

with mitral regurgitation. Some achieved results regarding

the number of detected S3 sounds are summarized in table1.

The method has achieved a sensitivity of 90.35% and a

specificity of 92.35% for the tested heart sounds. These

values should be considered preliminary due to the reduced

size of the database.

IV. CONCLUSIONS AND FUTURE WORKS

This paper introduces a new method for S3 heart sound

detection using a wavelet transform-simplicity filter. The

WT-S filter discriminates low frequency contained S1, S2

and S3 sounds from background noise/murmur. Thresholds

for the separation for discrimination of S1, S2 and S3

sounds as well as the depth of wavelet decomposition are

adaptively chosen using the mean square error as a stopping

criterion. The S1 and S2 heart sounds are detected using

high frequency signatures extracted from the separated S1,

S2 and S3 sounds. The S3 sounds are then recognized using

previously detected S2 sounds and a set of physiologically

motivated criteria. The method exhibits adaptability for va-

riety of population, which is one of the most prominent

requirements for effective heart sound detection.

The prepared test database is too small to extract final

conclusions on the method’s performance. Nevertheless, the

already achieved results are very promising.
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