
 
 

  

Abstract—Epileptic seizures are manifestations of epilepsy, 
which is a serious brain dynamic disorder. The analysis of the 
electroencephalographic (EEG) recordings provides valuable 
insight and improved understanding of the mechanisms causing 
epileptic disorders. An epileptic seizure is usually identified by 
polyspike activity; rhythmic waves for a wide variety of 
frequencies and amplitudes as well as spike-and-wave 
complexes. The detection of all these waveforms in the EEG is a 
crucial component in the diagnosis of epilepsy. Time-frequency 
analysis is particularly effective for representing various 
aspects of nonstationary signals such as trends, discontinuities, 
and repeated patterns where other signal processing 
approaches fail or are not as effective. In this paper a novel 
method of analysis of EEG signals using time-frequency 
analysis, and classification using artificial neural network, is 
introduced. EEG segments are analyzed using a time-frequency 
distribution and then, several features are extracted for each 
segment representing the energy distribution over the time-
frequency plane. The features are used for the training of a 
neural network. Short-time Fourier transform and several 
time-frequency distributions are compared. The proposed 
approach is tested using a publicly available database and 
satisfactory results are obtained (89-100% accuracy).  

I. INTRODUCTION 
PILEPSY is a disorder of the normal brain function, 
characterized by an excessive and uncontrolled activity 

of either a part or the whole central nervous system. The 
hallmark of epilepsy is recurrent seizures. The epileptic 
seizures are due to sudden development of synchronous 
neuronal firing in the cerebral cortex and are recorded using 
the electroencephalogram (EEG) by electrodes on or inside 
the brain [1]. This anomalous synchrony may occur in the 
brain locally (partial seizures) which is seen only in a few 
channels of the EEG recording, or involving the whole brain 
(generalized seizures) which is seen in every channel of the 
EEG recording. Given that recordings during an epileptic 
seizure (ictal) were rarely obtained, EEG analysis of 
epileptic patients usually relied on inter-ictal findings. In 
those inter-ictal EEGs, epileptic seizures are usually 
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activated with photostimulation, hyperventilation and other 
methods [2]. However, provoked epileptic seizures do not 
necessarily have the same behavior as the spontaneous ones. 

The introduction of long-term video-EEG monitoring has 
been an important milestone providing not only the 
possibility to analyze ictal events, but also contributing with 
valuable information in those candidates evaluated for 
epilepsy surgery. Moreover, the development of ambulatory 
EEG in the 1980s allowed the characterization of seizures 
and seizure-like events in the home setting [3]. This has the 
advantage that patients are monitored in their normal 
environment without the reduction in seizure frequency 
usually occurring during inpatient sessions. Since long-term 
and ambulatory EEG recordings are extended over several 
days, while the epileptic seizure may be characterized by 
occasional waveforms, data reduction is an important 
consideration for the expert. An expert detects epileptiform 
activity by visual inspection of the EEG, which requires 
considerable skills and is a time-consuming procedure for 
recordings that are days long. In addition, the subjective 
nature of the examination affects the outcome. Hence, 
automation of this process could save time, making the 
decision more objective and uniform. 

Generally, good automated seizure detection schemes 
facilitate diagnosis of epilepsy and enhance the management 
of long-term EEG recordings. However, the nonstationary 
and multicomponent nature of EEGs tends to increase the 
complexity of the automated seizure detection problem. 
Dealing with this type of problem, time-frequency based 
methods were shown to outperform conventional methods of 
frequency analysis since combine both time and frequency 
information in a single representation. 

In this paper, we explore the ability of the time-frequency 
(t-f) analysis to classify EEG segments which contain 
epileptic seizures. A novel three-stage method is employed, 
including (i) t-f analysis of the EEG signal and computation 
of the power spectrum density (PSD), (ii) feature extraction 
from the PSD and (iii) classification of the EEG recording, 
using artificial neural networks (ANNs). We have tested our 
method, using several different methods for t-f analysis, like 
short-time Fourier transform (STFT) and t-f distributions 
(TFDs). To our knowledge there is no study in the literature 
related to t-f analysis and feature extraction, reflecting the 
energy distribution over the t-f plane, for epileptic seizure 
detection. The proposed method has been evaluated using a 
benchmark database and the results are presented. 
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II. RELATED WORK 
Automated epileptic seizure analysis refers collectively to 

methods for: (i) epileptic seizure detection, (ii) epileptic 
seizure prediction, and (iii) automatic focus channel 
identification. These analyses are primarily performed on the 
EEG [1-3]. In this study, we focus only on the detection of 
epileptic seizures. 

Over the past three decades a lot of work has been done 
with the use of conventional temporal and frequency 
analysis measures in the detection of epileptic seizures in 
EEG recordings and comparatively good results have been 
obtained [4-11]. Many researchers focus their studies on the 
quantitative characterization of the underlying nonlinear 
systems (chaos) based on some evidence of a deterministic 
value of the EEG dynamics [12,13]. The complexity 
measures of the underlying EEG dynamics, such as 
correlation dimension [14], Lyapunov exponents [11,15] and 
kolmogorov entropy [16], have been derived and 
investigated. These measures can then be combined for the 
classification of EEG signals using nearest neighbour 
classifiers [17], decision trees [6], ANNs [4,15], support 
vector machines [11] or neuro-fuzzy inference systems 
[9,10] in order to identify the occurrence of seizures. 

III. MATERIALS AND METHODS 

A. Dataset 
We used the dataset described in reference [18]. The 

complete dataset consists of five sets (denoted as Z, O, N, F 
and S) each containing 100 single-channel EEG segments 
each having 23.6 sec duration. Sets Z and O have been taken 
from surface EEG recordings of five healthy volunteers with 
eyes open and closed, respectively. Signals in two sets have 
been measured in seizure-free intervals from five patients in 
the epileptogenic zone (F) and from the hippocampal 
formation of the opposite hemisphere of the brain (N). Set S 
contains seizure activity, selected from all recording sites 
exhibiting ictal activity. Sets Z and O have been recorded 
extracranially, whereas sets N, F and S have been recorded 
intracranially.  

In our analysis we use the above described dataset to 
create three different classification problems and then we 
tested our method with each one of them. In the first 
problem, two classes are examined, normal and seizure. The 
normal class includes only the Z type EEG segments while 
the seizure class includes the S type. The second problem 
includes three classes, normal, seizure-free and seizure. The 
normal class includes the Z type EEG segments; the seizure-
free class the F type EEG segments and the seizure class S 
type. In the third problem, all five classes are used, including 
all EEG segments from the initial dataset. According to the 
previous description, the datasets consist of 200, 300 and 
500 EEG segments, for the three problems, respectively. The 
different problems, related to the classes which are included 
in the classification were constructed since the medical 
interest is different for each of them, i.e. it is very important 

to evaluate the proposed method on the seizure-normal 
classes classification. Furthermore, these three problems are 
the most widely used in the literature and therefore we have 
selected them for the evaluation to be able to compare our 
approach with other approaches proposed in the literature. 

B. Time-Frequency Analysis 
STFT and various TFDs are used for the t-f analysis of the 

datasets [19-20]. The TFDs used in our study belong to the 
Cohen’s class of distributions: 
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where t is the time, f is the frequency, ( )x t  is the signal, 
* ( )x t  is its complex conjugate and ( ),g υ τ  is an arbitrary 

function called kernel, which is different for each TFD. 
Some of the TFDs employ a frequency and/or a time 
smoothing window. All time and/or frequency smoothing 
windows were set as Hamming 64-point length windows. 
Using t-f analysis, the PSD of the signal was calculated, 
which represents the distribution of the energy of the signal 
over the t-f plane.  

C. Feature extraction 
The PSD, calculated in the previous stage, is used to 

extract several features. A grid is used, based on a partition 
in the time and in the frequency axis. In the time domain 
three equal sized windows were selected while, in the 
frequency domain the employed partition divided the 
frequency domain in five subbands; Fig. I presents a sample 

PSD with the grid used for feature extraction. 
The frequency subbands, which were defined based on 

medical knowledge on EEG, are 0-2.5Hz, 2.5-5.5Hz, 5.5-
10.5Hz, 10.5–21.5Hz and 21.5-43.5Hz.; specific features are 
expected to be found in certain frequency bands for the EEG 
segments included in the dataset. Each feature, ( ), ,f i j  is 
calculated as:  

( ) ( ), , ,
i j

x
t

f i j PSD t d dt
ω

ω ω= ∫ ∫            (2) 

 
 

FIGURE I 
PSD, TIME WINDOWS AND FREQUENCY SUBBANDS USED FOR  

FEATURE EXTRACTION 
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where xPSD  is the PSD of the signal x  calculated using one 

of the above methods, it  is the thi  time window and jω  is 

the thj  frequency band. Each feature represents the 
fractional energy of the signal in a specific frequency band 
and time window; thus, the feature set depicts the 
distribution of the signal’s energy over the t-f plane. It is 
expected that the feature set carries sufficient information 
related to the non-stationary properties of the signal. The 
total energy of the signal is used as an additional feature. 
Therefore, each feature set is a 16 size vector (3*5+1) . 
Principal component analysis (PCA) was employed to 
reduce the dimension of the feature set.  

D. Classification 
The calculated features are fed into a feed-forward ANN. 

The architecture of the ANN is the same for all problems: 
N inputs ( N is the size of the feature vector), one hidden 
layer with 5* N  neurons and K outputs ( K is the number 
of the classes), each of them being a real number in the 
interval [0,1]. The units in the hidden layer are sigmoid units 
with hyperbolic tangent as activation function, while the 
outputs are linear. Each network is trained using a standard 
backpropagation algorithm [21]. The architecture of the 
ANNs was defined heuristically. 

IV. RESULTS 
The three classification problems, described above, are 

used to evaluate the proposed method. STFT and all twelve 
TFDs were tested for each classification problem. These 
result to a total of 39 different test cases (13*3 ). For each 
test case, 10 ANNs were trained and tested, using half of the 
data for training (randomly selected) and the remaining for 
testing. Thus, 10 confusion matrices were obtained and 
classification accuracy is calculated for each of them. The 
final result (classification accuracy) is calculated as the 
average of them. The size of the confusion matrix depends 
on the classification problem: 2x2 for the first classification 
problem, 3x3 for the second and 5x5 for the third. The 
computed average classification accuracies and standard 
deviations, for the three classification problems and all 
employed t-f analysis methods are presented in Table I. 
Also, for each classification problem, overall results have 
been derived, i.e. for STFT and all TFDs, the minimum and 
maximum accuracy is calculated as well as the average 
accuracy and the standard deviation.  

V. DISCUSSION 
We have proposed an automated method for epileptic 

seizure detection in EEG recordings. The method is based on 
t-f analysis of the EEG segments and extraction of several 
features from the PSD of the signal. These features are fed 
into an ANN, which provides the final classification of the 
EEG segments. The method is evaluated using three 
different classification problems, originated from the type of 

medical diagnosis which can be obtained. The effect of 
employing different methods for t-f analysis (STFT and 
several TFDs) is examined for each classification problem.  

The obtained results indicate high classification ability in 
epileptic seizure detection. For the first and second 
classification problems, almost all TFDs present excellent 
results (95%-100%), except MH and R distributions; both of 
them do not employ smoothing windows and thus the cross 
terms introduced reduce the quality of the obtained features 
and, subsequently, the classification results. Regarding the 
third classification problem, the results vary from 54.6% to 
89%, again with the TFDs that employ smoothing windows 
presenting the best results (84.8%-89%). STFT presented 
excellent results for the first classification problem (99.8%) 
and very good results for the second (91.8%), but it had a 
significant reduction in the third (65.3%), while WV 
distribution, presents satisfactory results for all three 
classification problems. TFDs employing both time and 
frequency smoothing windows indicate the highest 
performance; 98.8%, 99% and 87.6% average accuracy for 
the three classification problems, respectively. 

To our knowledge, t-f analysis and feature extraction, 
which reflect the energy distribution over the t-f plane, have 
not been applied in the analysis of EEG signals. Moreover 
the quality of the proposed method can be proven from the 
obtained results. The accuracy achieved by our method for 
the epileptic seizure detection is more than satisfactory and 
also its automated nature makes it suitable to be used in real 
clinical conditions. Besides the feasibility of a real-time 
implementation of the proposed method, diagnosis can be 
made more accurate by increasing the number of parameters. 
A system that may be developed as a result of this study may 
provide feedback to the experts for the classification of the 
EEG signals quickly and accurately.  

TABLE I 
OBTAINED ACCURACY (%) FOR ALL CLASSIFICATION PROBLEMS 

 Classification problems 
Distribution 1 2 3 

Short time Fourier transform 99.8 91.8 65.3 
Margenau-Hill 69.6 74.8 54.6 
Wigner-Ville 96.3 94.3 82.6 

Rihaczek 73.7 79.5 58.0 
Pseudo Margenau-Hill 95.1 97.7 84.2 
Pseudo Wigner-Ville 99 99.3 86.4 

Born-Jordan 98.1 99 88.4 
Butterworth 99 99.3 87.2 

Choi-Williams 98.2 98.2 84.8 
Generalized rectangular 98.1 98.8 88.8 
Reduced interference 100 100 89 

Smoothed pseudo Wigner-Ville 100 98.3 88 
Zhao-Atlas-Marks 98.6 99.9 87.1 
minimum accuracy 69.6 74.8 54.6 
maximum accuracy 100 100 89 
average accuracy 94.3 95.1 80.6 

Standard deviation 10.2 8.3 12.5 
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Table II presents a comparison between our method and 
other methods proposed in the literature. Only methods 
evaluated in the same dataset are included. For the first and 
the second classification problems, the results obtained from 
our method are the best reported. However, in the third 
classification problem, our results are not satisfactory; being 
almost 89%, while the best reported results for this dataset is 
99.28% [11].  

VI. CONCLUSIONS 
A novel method for EEG epileptic seizure detection is 

presented. The method is based on t-f analysis and features 
reflecting the distribution of the signal’s energy. Both of 
these features have not been employed for epileptic seizure 
detection, while the obtained results, obtained using a 
benchmark database, demonstrate the scientific added value 
of the proposed method. However, there is an important 
aspect which must be addressed; currently the method is 
used to characterize predetermined (with respect to their 
length) EEG segments. The modification of the proposed 
method in order to be able to automatically detect highly 
suspicious segments (regardless of their length) into long 
time EEG recordings and classify them regarding epileptic 
seizure, is an aspect that will be addressed in a future 
communication. 
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Polat et al. [6] Fast fourier transform-Decision tree Z, S 98.72 
Subasi [8] Discrete wavelet transform-Mixture of expert model Z, S 95 
This work Time frequency analysis-Artificial neural network  Z, S 100 

Guler et al. [15] Lyapunov exponents-Recurrent neural network Z, F, S 96,79 
Sadati et al. [9]  Discrete wavelet transform–Adaptive neural fuzzy network Z, F, S 85,9 

This work Time frequency analysis-Artificial neural network Z, F, S 100 
Guler et al. [10] Wavelet transform-Adaptive neuro-fuzzy inference system Z, O, N, F, S 98.68 
Guler et al. [11] Wavelet transform, Lyapunov exponents-Support vector machine Z, O, N, F, S 99.28 
Übeyli et al. [7] Eigenvector methods–Modified of Mixture of expert model Z, O, N, F, S 98.60 

This work Time frequency analysis-Artificial neural network Z, O, N, F, S 89 
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