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Abstract: Poisson noise is one of the factors degrading quality of scintigraphic images, due to 
statistical nature of photon detection. The purpose of this study is the development of a method to 
reduce the Poisson noise contained in scintigraphic images preserving contrast and spatial 
resolution. The method is based on Principal Component Analysis (PCA), considering that a 
small number of independent components can successfully describe useful image information, 
whereas a large number of independent components contain statistical noise. In order to apply 
PCA the image is decomposed into 8×8 blocks, considering the gray level values of the block as 
components. The most significant independent image components, in terms of gray level 
variability, are automatically selected based on the derivative of the percent of cumulative 
variability curve, with remaining components discarded as noise. The method was evaluated in 
phantom images by means of noise, contrast, contrast-to-noise ratio (CNR) and spatial resolution 
metrics and applied in clinical planar images. Comparison with conventional noise reduction 
filters was performed. Noise is significantly reduced in all noise reduction methods studied 
(Student’s t-test, p<0.05), whereas CNR is improved and spatial resolution is preserved only in 
the PCA. Improved visual performance is also demonstrated in clinical images. 

1 INTRODUCTION 

A scintigraphic image is the representation 
of a radioactive distribution inside regions of 
interest (ROIs) or the whole body[1]. Each pixel 
contains a discrete value, which is related to 
the number of γ-photons detected within a 
period of time. These discrete values follow a 
statistical distribution (Poisson distribution), 
due to the random nature of radioactive 
disintegration. The statistical variations of 
these values are considered responsible for the 
image Poisson noise. Thus it is obvious that 
the number of photon counts has to be 
increased in order the effect of Poisson noise 
to be reduced. This can be achieved by: (a) 
increasing the acquisition time with increased 
risk of patient motion, (b) increasing the 
amount of administered radioactive material, 
which will lead to higher patient’s absorbed 
dose and (c) using gamma cameras with 
multiple detectors or very highly efficient 
detector with the drawback of increasing costs. 

Considering the limitations of each of the 
above-mentioned methods, image-processing 
techniques are used instead to reduce the noise 
level without increasing photon counts. The 
simplest filtering technique is to replace each 
pixel value with the mean of its surrounding 
neighbors[2]. The immediate consequence of 
applying linear filters is degradation of  
 

 
contrast and resolution of the image, which 
appears smoothed. The median filter is another 
nonlinear filter option, which consists of 
replacing the value of each pixel by the median 
value of its neighbors. Both filters are 
stationary and non-adaptive, which means that 
the filtering operation is applied all over the 
whole image, without any consideration of 
noise level and count distribution[3]. Adaptive 
non-stationary procedures have been proposed 
in an attempt to reduce noise without 
degrading image quality. The common 
principle of this class of filters is to use 
statistical criteria for the selection of neighbors 
included in the smoothing procedure[4].  

The aim of this study is the development 
of a statistical method, based on Principal 
Component Analysis (PCA) to specifically 
address and reduce Poisson noise in 
scintigraphic images, preserving image quality 
characteristics such as contrast and resolution. 
The performance of the proposed method was 
assessed by employing quantitative image 
quality characteristics (noise, contrast, 
contrast-to-noise ratio (CNR) and spatial 
resolution) and comparing four conventional 
noise reduction methods (smooth 3x3 and 5x5, 
median 3x3 and 5x5) to the proposed one. 
Additionally, the proposed method is evaluated 
in clinical planar scintigraphic images, by 
means of a preference study. 



2 MATERIALS AND METHODS 

2.1 Principal Component Analysis (PCA) 

PCA is a multivariate correlation analysis 
technique which explains a variance-
covariance structure of observed data sets with 
a few linear combinations of original 
variables[5-9]. The motivation behind PCA is to 
find a direction, or a few directions, that 
explain as much of the variability as possible. 
This is achieved because each direction is 
associated with a linear sum of the variables, 
which are linear sums of the old variables. 
Thus the first principal component is the linear 
sum corresponding to the direction of greatest 
variability. The search for the second principal 
component is restricted to variables that are 
uncorrelated with the first principal 
component. 

Suppose that we want to perform a PCA 
upon variables X1,…,Xp . If we were dealing 
with only one variable, say variable Xj, we 
summarize its variability by the variance. 
Suppose that there are a total of n observations, 
so that for each of the p variables, we have n 
values. Let Xij be the ith observation on the jth 
variable. Let jX  be the mean of the n 
observations on the jth variable. Then we 
estimate the variability that is the variance of 
the variable Xj: 
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The total variance Vk, denoted by V, for 
variables X1,…, Xp is the sum of the individual 
variances. That is: 
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Let Y1,Y2,…,Yk be the first, second and 
subsequent principal components for the 
variables X1,…,Xp. In a sample, the variance of 
each Yk is estimated by: 
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where Yik is the value of the kth principal 
component for the ith observation. That is, we 
first estimate the coefficients for the kth 
principal component. The value for the ith 
observation uses those coefficients and the 
observed value of the ith Xj’s to compute the 
value of the Yik. The variance for the kth 
principal component in a sample is then given 
by the sample variance for Yik, i=1,2,…,n. This 
variance is denoted as seen above by Vk. The 
percent of the variability expressed by the first 
m principal components is: 
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where V is the total variance. As we chose the 
principal components successively to explain 
more and more of the variance, we have: V1≥ 
V2≥…≥Vp≥0. The first m principal components 
explain as much of the total variability, as it is 
possible to explain by m linear functions of the 
Xj variables.    

2.2 Application of PCA 

The aim using PCA is to reduce the volume 
of data, preserving a large amount of useful 
information. In the case of scintigraphic 
images we consider that a small number of 
independent components contain useful 
information (signal), whereas a large number 
of independent components contain statistical 
noise. Therefore, applying PCA and discarding 
image components which correspond to noise, 
a significant noise reduction can be achieved. 
In this study PCA was applied to scintigraphic 
images according to the following steps: 

PCA was applied to scintigraphic images 
according to the following steps: 
(i)  The image is decomposed into blocks of 

size 8x8, considering the gray-level values 
of the blocks as components. The rows of 
pixels in each block are arrayed into lines. 
In the matrix Xij, j=1,…, 64 is the value of 
each pixel in the block and i=1,…, n is the 
number of block. In order to avoid ‘block 
artifacts’ on the reconstructed image, PCA 
is applied in a sliding way. 

(ii)  PCA is applied to the data Xij in order to 
find the most significant independent 
image components p, where 1≤p≤64. P is 
the value, for which the second derivative 
of the Percent of Cumulative Variability 
(PCV) curve tends to zero. This can be 
observed by the change of the slope of the 
PCV curve. Figure 1 presents the percent 
of the total variance explained 
cumulatively from principal components. 

(iii) A denoised image is obtained by applying 
the inverse PCA and setting as zero the 
data that correspond to the 64-p less 
significant components.   

2.3 Performance evaluation  

To assess the performance of PCA with 
respect to noise reduction, and to test 
preservation of resolution and contrast, a 
quantitatively analysis was carried out based 
on hot spots and bar phantom images 
Specifically, a planar source of 57Co, acting as 
background and two small circular 99mTc 
sources, acting as hot spots, were used for 



measuring noise[10], contrast and CNR 
quantitatively, for different acquisition times 
(figure 2). In addition, to measure spatial 
resolution in terms of full width at half 
maximum (FWHM), a bar phantom was used 
consisting of horizontal and vertical linear 
sources of 99mTc of 5 mCi activity (high 
contrast resolution). These measurements were 
obtained by means of profile (figure 3). 

To test the applicability of the proposed 
method, the method was applied to planar 
scintigraphic images. Specifically, ten (10) 
bone, four (4) lung, (5) thyroid and six (6) 
parathyroid scintigraphic images of 256x256 
pixels size were acquired, based on the clinical 
protocols of the Nuclear Medicine Department 
at the University Hospital of Patras. Two 
nuclear medicine doctors examined 
scintigraphic images, with respect to 
anatomical characteristics. 

The proposed method was compared to four 
conventional noise reduction methods (median 
3x3, median 5x5, smooth 3x3 and smooth 5x5) 
employing quantitative analysis, applying 
parametric statistical tests (Student’s t-test) and 
clinical observation by means of a preference 
study.  

Figure 1: Estimation of p most significant 
components. 

 
 
 
 
 
 
 
 

Figure 2: Original image of hot spots phantom. 
 
 
 
 
 
 
 
 

Figure 3: Original bar phantom image. 

3 RESULTS 

3.1   Quantitative analysis 
The plots of noise and CNR as a function 

of time for the original and the five noise 
reduction methods are presented on figure 4 
and 5, respectively[11]. Specifically, figure 4 
demonstrates that noise is statistically 
significantly reduced in all methods studied 
(Students’s t-test, p<0.0001), with the most 
effective methods are the smooth 5x5 filter and 
the PCA, whereas figure 5 presents that CNR 
is improved by the PCA-based method due to 
preservation of contrast. 
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Figure 4: The reduction of noise as a function 

of time. 
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Figure 5: CNR for the five noise reduction 

methods. 
 
 

In Table 1, the FWHM for original image 
and the five noise reduction methods are 
provided. It is observed that PCA is the only 
method which preserves the value of original 
FWHM. 
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Table 1: FWHM estimation for the original 
image and the five noise reduction methods. 

Characteristic FWHM 
Original 2.9 
PCA 3.0 
Median 3x3 3.6 
Median 5x5 4.3 
Smooth 3x3 3.5 
Smooth 5x5 3.4 

3.2 Clinical examples 
In figure 6 the original bone scintigraphic 

image and the corresponding processed images 
are presented. The most effective and most 
preferred method is the PCA-based, since 
statistical noise is significantly decreased, 
while visual performance of anatomical 
structures is considerably improved. 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Representative example at a bone 
scintigraphic image after applying noise 

reduction methods. 

4 DISCUSSION AND CONCLUSION 

  A PCA-based method is proposed aiming 
to reduce Poisson noise contained in 
scintigraphic images. Method’s performance as 
compared to other four conventional noise 
reduction methods (median 3x3, median 5x5, 
smooth 3x3 and smooth 5x5 filter) has 
demonstrated improved denoising and spatial 
information preservation characteristics, by 
means of quantitative analysis. A future step is 
the combination of PCA with wavelet analysis 
for Poisson noise reduction, recently used in 
Positron Emission Tomography (PET) images 
with encouraging results[12]. 
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