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Abstract: In this article the development of a 
decision support system for medical diagnosis using 
self organizing artificial neural networks is proposed 
in order to classify/predict the dysfunctions of the 
lower urinary tract. This new tool is meant to help 
the urologists in obtaining an automatic diagnosis 
for complex multi-variable systems, and to avoid 
painful and costly medical treatments.  The clinical 
study has been carried out using the medical 
journals of patients with dysfunctions in the lower 
urinary tract. The system is able to distinguish (and 
classify) the following dysfunctions: Effort 
incontinence, bladder instability, obstruction of the 
lower urinary tract or the presence of no dysfunction 
at all. The results of the experiments display a high 
percentage of certainty of about 90 %.  
 
Introduction 
 

Despite the different tools available to the urologists 
to obtain the urodynamical data, it still remains very 
difficult to deliver a correct diagnosis: the knowledge 
concerning the origin of the detected dysfunctions 
depends mainly on already acquired experience and on 
the research which is constantly carried out within the 
field of urology. The experts are often confronted to 
situations that are not described in the medical 
bibliography or that are poorly described. Also, the 
dysfunctions whose exact diagnoses are complicated to 
deliver are numerous as a consequence of the interaction 
with the neural system and the limited knowledge 
available on how it operates. During the last five years, 
the amount of research whose aim is to study the neural 
control of the lower urinary tract has risen. This fact is 
clearly reflected at the European congress I.C.S. 
(International Continence Society). In 2001, 28 studies 
related to neurology were presented whereas 91 studies 
including the organisation of a symposium on neurology 
were presented at the congress in 2005. We are facing 
an arduous task that requires progress towards a solution 
and at the same time, it will be necessary to suggest new 
models and methods to solve other problems both for 
the biological systems as for other environments and 
disciplines. 

For the purpose of diagnosing dysfunctions of the 
lower urinary tract (LUT),  various techniques which 
entail different degrees of invasiveness of the urological 

patient exist [1] [2]. A urological study of a patient 
consists of carrying out various costly tests (physical, 
neurological, flowmetry and cystometry examinations) 
with a high degree of complexity and of invasiveness. 
This project is intended to aid the specialist in obtaining 
a reliable diagnosis with the smallest possible number of 
tests. This way, major benefits are obtained both for the 
patient, avoiding him useless and painful tests and for 
the medical centres, as urodynamical tests are 
expensive. 

Decision support systems (DSS) in medicine can be 
viewed as intelligent advisors, or sources of second 
opinion. Their typical life cycle often consists of 
defining a problem on which to focus, gathering the 
corresponding retrospective data, and constructing the 
predictive model. The decision support system has to be 
immediately accessible providing the useful data in 
accordance with the situation [3] [4]. The range of 
techniques used as tools for the DSS is very wide, 
covering everything from traditional statistics and 
expert systems to more emerging fields such as 
Artificial Neural Networks (ANN), Fuzzy Inference 
Systems (FIS) [5] and other technologies within Soft 
Computing [6]. 

Because of the high degree of heterogeneity of the 
information gathered in a urological study (qualitative 
and quantitative parameters, boolean data, multi-value 
information etc.) we have based our DSS on artificial 
neural networks, in particular on Self-Organizing Maps 
(SOM) [7]. Kohonen’s Self-Organizing Maps have 
demonstrated their validity as components for 
prediction, classification and diagnostics of medical 
signals and data within various specialities [8] [9] [10] 
[11]. 

The SOM can be used combined with other methods 
[12] or/and by clustering cases with similar properties 
together [13] . 

In the present article, a system for aiding in 
diagnosing dysfunctions of the LUT is implemented. 
The remaining part of the paper is organized as follows: 
First, it describes the design of a DSS. Next, it describes 
the training of it by means of the available data and the 
subsequent testing carried out with new data in order to 
analyse the results. Finally, the relevant conclusions are 
drawn. 
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The design of the system 
 

Decision support applications within medicine have 
rapidly evolved over the last 40 years. Research into the 
methodology of developing expert systems has brought 
together the fields of artificial intelligence, computer 
science, mathematics, cognition, and even systems that 
model genetic and evolutionary development of 
biological systems. The complexity of these systems 
have ranged from simple algorithms using predicate 
logic (or set theory to machine learning and neural 
networks) to systems that integrate automated decision 
support with other disparate clinical information 
systems.  

A DSS in medicine is a system that aids the 
specialist in the determination of the diagnosis based on 
findings and test results. The DSS can be divided into 2 
different types of components: the knowledge 
component and the information system component. 
Methods from software engineering, knowledge 
engineering and management are combined into a 
dynamic development cycle that allows stepwise update 
and refinement. 

The developed DSS is composed of 3 blocks in a 
composition as shown in figure 1.  

 
 
 
 
 
 
 
 
 
 
 

Figure 1: Diagram of the decision support system. 
 
The urological database (DB) is the result of 

urological studies during various years carried out in 
close collaboration with urologist [14] [15]. This DB is 
obtained by converting the medical journals of patients 
into registers. The motor of inference is the heart of any 
support system and in our case it creates the knowledge 
database with the information which is provided by the 
DB. 

The knowledge base is composed of the database of 
the patients that has become a part of the knowledge 
when the motor of inference has decided it.  

SOM will be used as a motor of inference that 
allows classifying and predicting. They represent a type 
of neural network of unsupervised learning. SOM use 
the competitive learning where cells/neurons are 
competing against each their neighbours. One of the 
cells becomes the "winner" with full activity and then 
suppresses the activity of the remaining cells.  

SOM is composed of neurons located in a two-
dimensional matrix. With every node of the SOM, a 
parametric model vector also called reference vector mi 
= (mi1 mi2 ... min) is associated, where n is the dimension 

of the input vectors. In our case they are the n-fields of 
each observation of a pattern or a patient i-register.  

The input vectors, that in our case are the registers of 
the patients, are mapped into the neighbours cells in the 
map. If they have similar values or they match the same 
dysfunction, they then map the same neuron.  

The proposed DSS has been implemented in the 
programming language C++, following the algorithms 
of the self-organizing maps of Kohonen. It has to define 
the parameters of the arrays to construct the matrix in 
the input dimension and the size of the reference vector 
in order to be able to read the database of patients which 
is the objective of our motor of inference.  

 
The network settings 

 
The Kohonen network used as a classifier is 

organized as follows in the figure 2. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The Kohonen network. 
 

Each node of the network is associated to a vector in 
the input space. The ‘winner’ modifies the weights of 
the whole ‘neighbourhood’. 

One-dimensional input vector α of length N (N 
equal 21. table 1), representing important parameters 
from a sample of the input space.  

Two-dimensional map with neurons (nodes), where 
each neuron is connected to each parameter from the 
input vector by a weighted connection. The result is an 
input vector that is fully connected to a topological map 
consisting of 2500 neurons (M x M, M being 50). Thus, 
there are N x M x M weighting factors. The connection 
weights are initialized randomly according to a uniform 
distribution between -1 and 1. 

The network was implemented in C++ code. The 
training of the SOM is basically done by running the 
training data over and over again in order to adjust the 
weighting coefficients. Various numbers of training 
cycles were applied until no further improvement (better 
prediction results, on the average) was noticed. The 
training algorithm of the Kohonen network was done 
during 2000 cycles and it employs the competitive and 
unsupervised method (‘self-organizing maps’). It 
proceeds as follows: 
 
1. A learning example (vector with N parameters) is 

presented at the input. 
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 2. At each iteration t, the ‘similarity’ is calculated 
between each node n and the input vector α by 
computing a simple Euclidean distance δn: 

 
)(min)( tWt knkn −= αδ r

 
(1) 

This ‘winner’ neuron has been obtained via a 
competitive process among the neurons and it is defined 
as the neuron with the closest reference vector to δ.  
 
3. The node with the minimum distance is selected: 

i.e. the ‘winner’. 
4. The winner node’s weights and also its close 

neighbours in the map are adapted as follows: 

       
Where:  
• Wkn(t+1) and Wkn(t) are the weighting factors 

between input feature (parameter) k and node n 
at iteration t and t + 1; 

• α is the current input vector; 
• c(t) is the learning rate  

o c(t=0)=1.0 at start, with c decreasing 
each cycle t: 

o c(t+1) = c(t) –0.001 

• h(t) is the neighbourhood function: 
Where r is a constant and (imin, jmin) are the 
coordinates of the winning node. The net result is that 
learning is not restricted to adapt the weight correction 
of the ‘winner’ node alone, but also to all ‘neighbour’ 
nodes where h(t) is different from 0. The neighbourhood 
function h(t) defines a dynamic square region on the 
output node map. In our configuration, r has been given 
the value of 2 (in both directions, X-axis and Y-axis). 
h(t) determines the set of neurons in the layer that 
change their weigths. This two parameters (h and c) 
deerease gradually with the number of adaptation steps. 
5. The procedure is repeated from step 1 for the next 

iteration t. 
 

Experimentation 
 

An exhaustive urological exploration with 21 
different measurements has been carried out with 250 
patients with dysfunctions of the lower urinary tract in 
order to create a database. The data has been analysed 
and processed before entered into the network in order 
to ensure its homogeneity. With this information, a 
database of these patients was created with the Standard 

Query Language (SQL). These 250 registers contribute 
to the full knowledge adding different values to delimit 
the ranks of each measure. Each of these registers 
contains the information measured in 21 fields showed 
in Table 1. For this reason, this database plays a crucial 
part in order to obtain the knowledge base of our 
system.   
 
Table1: Fields discretized for the urological database. 

Neurological Physical Examination 
Perineal and perianal sensitivity 
(1-4) 

Anal tone(1-2) 

Voluntary control of the anal 
sphincter (1-4) 

Age (1-4) 
 

Sex (1-2) 
 

Bulbocavernosus Reflex (1-4) 

Free Flowmetry 
Volume of urine (1-4) 
 

Post void residual (1-4
  

Maximum flow rate (1-4) 
 

Micturition time (1-4)  

Cystometry 
Bladder storage (1-4) 
  

Detrusor pressure during 
filling (1-4)  

First sensation of bladder filling (1-4)  
Test Detrusor pressure /Micturition flow 
Detrusor contraction (1-3) 
 

Abdominal pressure (1-2) 
 

Volume of urine in 
micturition(1-4) 
  

Post void residual (1-4) 
  

Maximum pressure Detrusor 
(1-4)  

Maximum flow rate (1-4) 

Average flow rate (1-4) 
  

Micturition time (1-4) 

Diagnosis 
Diagnosis 
(Effort Incontinence - Bladder Instability – Obstruction of the LUT 
– No dysfunction) 

 
The processing of analysing the data was necessary 

due to its diversity. It has shown to be necessary to 
revise, adapt and filter the medical journals collected by 
several doctors in order to ensure the correct 
homogeneity the database requires. Also, the true nature 
of the patients heterogeneous data such as age, sex, 
volume of urine, time of micturition etc., lead to data of 
such a high degree of diversity that discretization 
becomes inevitable when applied to a neural network 
unable to assimilate it.  
With the assistance of specialists within the field of 
urology, a range of values for each field of the database 
has been created. For example in Table 1, the values 
given to the volume of urine of the section of the Free 
Flowmetry lies between 0 and 500. The discretization 
applied is between 1 and 4: 0 - 150 :1 , 150 - 300 :2 , 
300 - 500 :3, 500 - ≤ : 4 .  

In order to carry out the training of the system, 200 
entries of the database are randomly taken. These data 
are the fields of each pattern which indicate the 
dimensionality of the reference vector. Each patient is a 
pattern in the input of the net and they model the matrix, 
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 specifically the patterns around the reference vector by 
the weights of each of them. After the map has been 
trained by means of the database of patients, it is 
possible to identify different areas which locate the 
specific dysfunctions as shown in figure 3. It discerns 
(and classifies) between the dysfunctions of effort 
incontinence (1), bladder instability (2), obstruction of 
the lower urinary tract (3), or the presence of no 
dysfunction at all (0). 

The topology of the map is determined by the 
quantity of cells which it comprises. In our case, it is of 
50x50. This size is due to the number of the 
registers/patterns entered to the net and the number of 
areas to be classified. Other sizes were tested; in 
particular 10x10 and 25x25 and their results were lower. 
The reason is that when working with multivariable 
data, every dysfunction can not be located only in one 
place. In other words, a huge net is needed in order to 
have a lot of neurons which can be labelled with many 
different reference vectors. Sometimes, even some of 
these neurons with theirs reference vectors only collect 
one pattern in the training but it is different to another 
neuron with the same dysfunction. After the map has 
been trained by means of the database of patients, it is 
possible to identify different areas which locate the 
specific dysfunctions as shown in figure 3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Representation of Kohonen map clustering the 
different dysfunctions 

 
The Kohonen map shows that the data relating to the 

patients are grouped in specific areas each relating to 
the corresponding urinary disease. Likewise, it is 
possible to check how the map has classified the 
diseases 1, 2 and 3 as well as the disease free 0 in well 
defined zones. Thus, when one is dealing with multi-
variable problems, one must be very precise in the 
collection of data of an exploration performed on a 
patient.  An error in the data collection can lead to a 
misleading diagnosis. 
 
The results 

 
The DSS has carried out a series of diagnosis which 

we subsequently will assess. When a new patient’s 
register is introduced on the map it will match a neuron 

with the shortest distance to the characteristic pattern.  
This neuron is within an area with a specific 
dysfunction (0, 1, 2 or 3). This new entry will thus be 
diagnosed the same dysfunction as the neuron.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: New input vector and its method of pattern 
recognition.  

 
In the figure 4, a is the new pattern or input vector. 

This new input finds the shortest euclidean distance 
among all the neurons labelled (0, 1, 2 or 3) on the map. 
The discontinued lines b show some of these distances. 
At the end of the process the shortest distance c is 
localized in the neuron (5,6) in the coordinates of the 
matrix. The reference pattern of this neuron is d. The 
resemblance of these two patterns is striking as the test 
pattern has matched it. This process has to be done for 
each new pattern.   

Figure 5 is the result of the recognition process. 
From the graphics, it can be observed that effort 
incontinence and the disease free patients are the 
diagnosis with the highest degree of certainty with more 
than 90%.  
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Figure 5: Percentage of certainty of the diagnosis 
classified according to disease. 
 

This is due to the circumstance that the precision, 
with which the tests carried out were made, specifically 
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 within the field of cystometry, results in that the 
correctly measured value of these fields determines a 
diagnosis with a very low probability of error. The 
diagnoses of bladder instability and of obstruction of the 
LUT represent values of around 80% accuracy. 

 
Conclusions 

 
In the present article a DSS has been developed for 

the diagnosis of dysfunctions of the lower urinary tract 
with a degree of certainty of 90%. It has been observed 
that the SOM give very good results as concerns the 
recognition process of the urodynamical vectors of the 
patterns obtained from patients with urological 
dysfunctions. The system does not produce negative 
false. An ill patient will always be diagnosed as ill. 
Errors only take place when having to pinpoint similar 
dysfunctions. 

The research constitutes the basis for further studies 
and research in the field of the system for aiding the 
diagnosis of dysfunctions in the LUT. In this regard we 
are considering the use of another type of unsupervised 
neural network such as the Growing Neural Gas (GNG) 
[16]. 

The system is of great help to the urologists as it 
permits them to eliminate tests with different variables 
and thus saving costs, time and pain for the patients.  

A simple graphic interface which facilitates the 
entering of data by the user in order to train the learning 
of neural network (SOM or other type of network) 
should be created. In this way, it is possible to detect the 
significant relations between the multiple variables. 
This interface has recently been created and urologists 
have now started to use it. As a consequence, the 
collected data will be more precise and the 
discretization will be done when entering the medical 
journal of the patient. Time will therefore be saved, and 
the probabilities of errors will be reduced considerably. 
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