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Abstract: In the last years, cardiomyocytes and
collagen matrix have been found responsible of
the high passive stiffness of cardiac muscle when
compared to the skeletal one. However, the archi-
tectural and mechanical aspects of the cardiomy-
ocytes and of the collagen matrix are not com-
pletely known.
In particular, the endomysial collagen contribu-
tion to the passive mechanics of cardiac muscle as
well as its micro anatomical arrangement is still a
matter of debate.
In this work we consider two alternative computa-
tional models of some specific aspects of the car-
diac muscle, in order to investigate the mechanical
and structural properties of the endomysial colla-
gen.
These two models represent different views of en-
domysial collagen morphological structure.
This is done by means of a computational tech-
nique inspired to pre-structured recurrent neu-
ral networks, representing the endomysial colla-
gen matrix as a net of springs.
We found out that in one model a given stress/strain
ratio (of the net of springs) is obtained with a much
smaller (w.r.t the other model) elasticity springs
constants mean value.
This seems to indicate that, by a more appropriate
structure, a given stiffness of the myocardial tissue
can be obtained with endomysial collagen fibers of
much smaller size.

Introduction

High passive stiffness is one of the mechanical
features that characterize the cardiac muscle when
compared to the skeletal one [7]. There are several
studies concerning the components and the architec-
tural aspects of the cardiac muscle responsible for this
particular feature [8, 7], in particular cardiomyocytes
and collagen matrix have been proposed as candi-
dates.

Cardiomyocyte architecture is now reasonably
known and well described in the literature [9, 10];
however, many researchers are investigating how the

cardiomyocyte architecture is involved in regulating
the electrical and mechanical behavior of the cardiac
muscle [10, 11].

On the other hand, the collagen matrix is com-
posed by (1) endomysial collagen that connects my-
ocytes and surrounds, in a mesh-like structure, the
myocytes themselves and (2) perimysial collagen that
groups myocytes together, running in parallel with
myofibrils and linking itself to endomysial collagen
[12, 13, 14].

In [14] a mathematical model of the perimysial
collagen is defined, in order to describe its role in the
myocardial mechanics during ventricular filling (di-
astolic phase) and to identify the physical parameters
characterizing perimysial collagen.

Much more difficult is the assessment of en-
domysial collagen contribution to the passive me-
chanics of the cardiac muscle; in particular, it is still a
matter of debate its micro arrangement and how dif-
ferent micro arrangements could influence this me-
chanic.

As a contribution to this discussion, we propose
some computational models to investigate the me-
chanical and structural properties of the endomysial
collagen. In order to do this, we need simplified com-
putational models of some aspects of the cardiac mus-
cle itself. Our aim is to experiment different mod-
els based on different morphological structure of en-
domysial collagen.

We set up two models: one mainly based on the
morphological structure described in [15], and the
other one based on traditional micro anatomical view
of the endomysial collagen.

We model the myocardial tissue as a net of springs
representing the cardiomyocytes together with the en-
domysial collagen distribution. We treat the springs
as elementary units, and we connect them in order to
imitate the interconnections between collagen fibers
forming the collagen distribution. Then, we stress the
net of springs by applying some external forces of
suitable magnitude and direction. In this way, we ob-
tain a strain of the net itself, which depends on the
elasticity constants of the springs of the net.

Our computational techinique is inspired to the
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work proposed in [16, 17], where they use pre-
structured recurrent neural network to simulate the
dynamic of a viscous-elastic object represented as a
spring model as described before. This allows us: (1)
to avoid to write down the entire differential equations
system, (2) to learn the main physical parameters de-
termining the spring model and, finally, (3) to model
quite different-sized systems, ranging from a micro-
to a macro-view of the system (i.e., our approach is
scalable).

We want to demonstrate that if the net of springs is
structured according to the point of view of [15, 18],
then to obtain a desired stress/strain value we need
much smaller elasticity springs constants than the
ones obtained structuring the net according to the tra-
ditional point of view [19].

In order to do this, we organize our computational
model in such a way that it learns which have to
be the spring constants corresponding to a specified
stress/strain value.

Our experimental results seem to indicate that, by
a more appropriate structure, a given stiffness of the
myocardial tissue can be obtained with endomysial
collagen fibers of much smaller size. This is consis-
tent with the experimental results of [15]. Moreover
our numerical results are compatible with the ones in
[9] which are obtained via an analytical method on a
simple model of the perimysial collagen.

The paper is organized as follows: in Sec-
tion Models and Methods we introduce the micro
anatomical architectures we want to compare and the
computational tecnique used to this aim; in Section
Experimental Results we present some experimental
results. Section Conclusion and Future Work ends
the paper with conclusions and future work.

Models and Methods

In this Section we first describe the micro anatom-
ical models of the distribution of myocardial en-
domysial collagen we want to compare: the old model
as described in [19] and the new model as it can be
found in [15]. Then, we illustrate our methodology to:
(1) computationally model different micro anatomical
arrangements and (2) show that the arrangement pro-
posed in [15] is indeed more suitable w.r.t the experi-
mental results in [15].

Micro Anatomical Models of the Distribution of My-
ocardial Endomysial Collagen

Generally speaking (see [9]), heart myocytes and
capillaries are enmeshed in a net of connective tissue
organized in different levels:

epimysium which is the layer of connective tissue
surrounding myocardium;

perimysium which is associated with groups of my-
ocytes;

endomysium which surrounds and connects each in-
dividual muscular cell.

Thus collagen is an essential component of my-
ocardial connective stroma. Collagen arrangement
probably has the significance of preserving heart
micro-architecture and chamber geometry, maintain-
ing the correct myocyte alignment and possibly con-
tributing to the control of myocardial contraction [15].

Figure 1 shows the old view of the endomysial
collagen arrangement. It has been described as a
weave network surrounding each individual myocyte
and connecting adjacent myocytes and capillaries,
through bundles of collagen called “struts” ([19, 12]).

Figure 1: Known model of myocardial endomysial
collagen distribution. From [15] with permission

Figure 2: Revisited model of myocardial endomysial
collagen distribution. From [15] with permission

Figure 2 shows the new model proposed in [15] of
myocardial endomysial collagen distribution, in con-
trast with the old one. The endomysial collagen fibers
are organized in a layer enveloping myocytes and cap-
illaries. The endomysial sheath spreads from one my-
ocyte (M in Figure 2) to neighboring one like a lam-
ina, and extends along the fully myocyte length. This
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lamina also completely wraps neighboring blood ves-
sels (C in Figure 2). For more details see [15, 18].

In modern specialist text-books of cardiology the
anatomical site and arrangement of the components
of the model of cardiac muscle contraction as origi-
nally proposed by Hill ([20]) are still considered un-
certain. In this work we try to ascribe some of the
properties of cardiac muscle contraction to morpho-
logical and physical properties of the connective tis-
sue. To this end, we model various micro anatomi-
cal arrangements of the endomysial collagen and then
computationally analyze their behavior. We now illus-
trate our methodology, by first describing the Physical
Models of myocardial connective tissue we propose
for the collagen arrangements. Then, we illustrate the
methodology we used to make our computational ex-
periments.

Physical Models

We propose two physical models, both intended
to capture some aspects and characteristics of the my-
ocardial tissue during the diastolic phase.

To illustrate the most important features of the
proposed physical models, consider Figure 3. The
main characteristic consists in the fact that we rep-
resent the connective tissue (which is supposed to be
made up primarily of collagen [20, 15, 18, 19]) with
a set of connected springs (continuous lines in Fig-
ure 3). The geometrical arrangements of these springs
are intended to reflect the different micro anatomi-
cal views of the collagen distribution we want to ex-
periment. Some other springs (those included in the
dashed lines in Figure 3) represent myocytes, which
are considered essential elements in developing pas-
sive tension [8, 21, 7]. A value for the elasticity con-
stants of the springs representing myocytes was ex-
trapolated from the Young module of myocytes [7].

Furthermore, the myocytes dimension and dispo-
sition [22] gives us the initial disposition of the mass
points. As an example, the initial distance between
points Pi (the second node in the first row starting
from the left) and Pj (the second node in the last row
starting from the left) represents the resting length of
the myocyte [8, 21, 22], whereas the distance between
points Pi and Pk (the third node in the first row start-
ing from the left) corresponds to an estimate of the
distance between two myocytes [15, 18]. Finally, we
suppose that the whole system is stressed by some ex-
ternal forces (the arrows in Figure 3), which are ap-
plied to each mass point.

As for the forces directions, we have that the
forces simulate the stress induced by blood pressure
on a microscopic piece of myocardial tissue. Thus, we
suppose that the stress acts in all directions and so the
vectors representing the forces are initialized in such
a way to reflect this assumption (Figure 3). The mag-
nitude of this vector was approximated starting from

the mean value of diastolic pressure and it was com-
parable with values in the literature [22], regarding
the passive strength on sarcomeres during diastole.

In order to investigate the differences between the
model inspired to old micro arrangement view as op-
posed to the model inspired to the new view proposed
in [15], we will use the physical models shown in Fig-
ures 3 and 4, respectively.

The physical model in Figure 3 is based on the old
micro arrangement showed in Figure 1: in fact, there
are few connections and only between adjacent my-
ocytes. On the contrary in Figure 4, which is based on
Figure 2, we have that each mass point is connected
in a more complex way to the other mass points. The
connections are such that all the mass points which
are sufficiently close are connected.

external forces

Pj

PkPi

fiber of

mass points

collagen
(springs)

Figure 3: The physical model inspired to the tradi-
tional view of the distribution of endomysial collagen

System Dynamics

The dynamic of the entire system could be sepa-
rated in two distinct phases:

Diastolic phase The system is stressed by external
forces (see vector forces in Figure 3); the springs
representing the connective tissue react to these
external inputs and the entire net is strained. If
we consider our system immersed in a viscous
fluid, the system will stop in a position of equi-
librium, where the internal forces of the system
(due to the springs reaction to the external forces)
balance the external forces. In this work, we will
deal only with this phase.

Systolic phase Each myocyte [20, 19] contracts in
response to the activation of its sarcomeres and
it tends to generate a force in the opposite direc-
tion of the corresponding external force; the idea
is that the system will return in a position of equi-
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Figure 4: The physical model inspired to the view of
the distribution of endomysial collagen proposed in
[15]

librium corresponding to the initial position. This
phase will be considered in a future work.

The Computational Model

The computational model of myocardial connec-
tive tissue proposed in this work is inspired to Nurn-
berger and Radetzky study on pre-structured neural
network [16, 17]. The main idea is to model the sys-
tem through a set of connected springs, and to com-
pute the dynamic of the whole system via a recurrent
neural network that simulates the springs behaviour.
Note that, in a conventional approach, a system of dif-
ferential equations must be constructed for the physi-
cal model, e.g. by linear or non-linear springs models.
Depending on the complexity of the system to model,
the construction of differential equations could be ex-
tremely difficult as well as the identification of the
right parameters [16, 17].
More in detail, in [16, 17] two distinct network mod-
ules are used, each computing the dynamic of a par-
ticular element of the physical model. The first mod-
ule (mass point module) is composed by neurons that
compute the dynamic of the mass points, whereas the
second module (spring module) is composed by neu-
rons that compute the dynamic of the springs. These
modules are connected together in according to the
physical model. The resulting neural network is recur-
rent, since there are self-connected neurons (called in-
tegrator units, see [16]). More in detail, the mass point
module (Figure 5) consists of three distinct neurons
as shown in Figure 5. These neurons compute respec-
tively the acceleration, the velocity and the position
of each mass point (white circle in Figures 3 and 4).
On the other hand, the spring module (Figure 6) com-
putes the instantaneous reaction force engendered by
a stressed spring. This force depends on the position

and the velocity of the uttermost points of the spring.
Note that in Figure 6 the weights of the connections
to the neuron computing the instantaneous reaction
force (neuron F in Figure 6) represent directly the
constants characterizing the spring: the elastic (k in
Figure 6) and the viscous one (v in Figure 6); the vis-
cous constant is required to be different from zero in
order to obtain an equilibrium distribution at the end
of the propagation step.

External forces

Internal forces

a(t+1) p(t+1)v(t+1)

p(t)v(t)

Figure 5: A mass point module

S

V

Total force

k

v

p1
p2

v1
v2

Figure 6: A spring module

The Learning Procedure

We now illustrate the learning procedure used to
obtain the desired behavior of the system. Our goal is
to learn the right physical parameters (i.e. the elastic
constants values) of the springs in a way such that the
system will stop in a desired position of equilibrium.

This is achieved in the following way. The sys-
tem is stressed by the external forces; this input is
propagated on the network, and all the mass points
positions are recomputed according to it. This prop-
agation procedure will stop only when the network
reaches equilibrium. If the computed equilibrium is
not sufficiently close to the given target position, then
the elastic constants of the springs are updated and the
propagation procedure is restarted. When the equilib-
rium is sufficiently close to the target position, the
learning process is complete.
The most crucial step of our learning algorithm is
the update of the springs elastic constants.To cope
with this problem, we adopt a particular updating
method different from those suggested in literature
[23, 16, 17]. In the following, we illustrate our up-
dating procedure.

We suppose we are given n springs. The global
error at the end of the propagation procedure is com-
puted by E = max0≤i≤n Ei being, for all i = 0, . . . ,n,
Ei = ai−di

di
, where ai is the actual length and di is

the desired length of the spring i. If the global er-
ror is less or equal to a given tolerance then the
learning procedure terminates, otherwise we update
the springs elasticity constants in the following way:
k′ ei = k ei +Eik ei. By doing so, we have that we are
able to reduce the overall error.
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Experimental Results

Finally, we present some experimental results we
obtained in the learning phase of our recurrent neural
networks.

In the following, we call simple network the model
inspired to the oldest view of micro arrangement of
endomysial collagen (Figure 3), while we call com-
plex network the model inspired to the newest one
(Figure 4).

The experiments we carried out depend on various
factors:

Geometrical dimensions Here we deal with the di-
mension of myocytes and the distance between
them. In order to reflect the real myocytes ar-
rangement (as it can be found in the literature
[15, 18, 8, 21, 22]), we set the distance between
two mass points (see Figures 3 and 4) to 1.6µm,
that is the resting sarcomere length for human
myocytes. The distance between two parallel my-
ocytes is estimated to 15µm [15].

Physical parameters Here we deal with physical pa-
rameters of the springs and of the environment
they are embedded in: external forces magni-
tude and direction, desired network strain, initial
elastic constant and viscosity coefficient. As al-
ready said, the external forces are applied on each
mass point and have a radial direction (see Figure
3). Moreover, their magnitude is calculated from
the mean value of end diastolic pressure (about
20mmHg) and by considering the dimensions of
the system.

In order to choose the desired network strain
parameter we consider both the vertical and the
horizontal strain. For the vertical strain, in our ex-
periments we use values taken from the interval
ranging from 20% to 35%. This range is consis-
tent with values which can be found in in the lit-
erature (e.g. [15]).

On the other hand, the horizontal strain is cho-
sen in the range between 0% and 2%. In fact, we
suppose that in the desired final disposition the
sarcomeres will be slightly spaced out.

Finally, the initial elastic constants are chosen
(by trials) in a way such that the initial strain is
not too far from the desired network strain, while
the viscosity coefficient is chosen (by trials) to re-
duce the number of iterations required to obtain
an equilibrium state.

Numerical method parameters Here we deal with
tolerances, namely the propagation tolerance and
the learning tolerance. The propagation tolerance
regulates the equilibrium state trapping. Indeed,
we say that the system is in a equilibrium state
when the resulting force on all of the mass points
is less than or equal to the propagation tolerance.

The learning tolerance is used in order to
decide the termination of learning algorithm.

Namely, the error defined in the previous section
has to be less or equal to the learning tolerance in
order to stop the learning process.

Numerical results We focused on the mean value of
the springs elasticity constants (MVSEC).

The values for all the experimental parameters are
summarized in Table 1.

Table 1: System parameters

Geometrical and Physical Parameters
Sarcomere initial length 1.6µm
Sarcomere final length 1.92, 2.0, 2.2µm
Myocyte diameter 15µm
External Force 3−6N
Viscosity constant 1.0−4

Initial k e for simple network 3.0
Initial k e for complex network 10.0

Numerical Parameters
Propagation tolerance 1e−10

Learning tolerance 1e−3

Our experimental results (obtained by properly
varying the vertical and horizontal strains as de-
scribed above) are in Table 2, where in the simple
network and complex network we show the respective
mean values of the elasticity constants computed by
our learning procedure.

Table 2: Experimental results of the learning proce-
dure

Strain Network MVSEC
Vertical Horizontal simple complex

20% 0% 173.25 12.25
25% 0% 172.13 10.29
35% 0% 170.85 7.47
20% 1% 20.87 3.61
25% 1% 19.75 3.21
35% 1% 18.46 2.68
20% 2% 13.63 2.63
25% 2% 12.50 2.30
35% 2% 11.22 1.90

Conclusion and Future Work

Our experimental results seem to indicate that, by
an appropriate structure, a given stiffness of the my-
ocardial tissue can be obtained with endomysial col-
lagen fibers of much small size. Moreover, as already
noticed our results are consistent with the ones in [9].
We also hope that the possibility that larger collagen
fibers do not necessarily give a greater stiffness could
help to explain some problems exposed in [12].
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In a future work we plan to model also the systolic
phase and make computational experiments similar to
those performed for the diastolic phase. In the systolic
phase model will be more complex since we have to
take into account also the myocytes contraction. This
will allow us to have a rather complete model for the
myocardial tissue behavior.
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