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Abstract: An experimental method was proposed in
order to determine the material moduli of estan and
silicon which represent the artificial materials of a
vascular wall tissue. Various models of the blood ves-
sels were prepared from these materials for the exper-
imental study of a blood flow using PIV (Particle Im-
age Velocimetry) and UVP (Ultrasound Velocity Pro-
filometry) methods. Material moduli are necessary
for the further investigation of the flow-structure in-
teraction. Porcine aortic tissue was examined as well
to compare the properties of the real and artificial ma-
terials. Viscoelastic and hyperelastic models were ap-
plied to fit the experimental data and to obtain the
material moduli.

Introduction

Estan and silicon are materials appropriate for physical
models of vascular vessel wall intended for experiments
using PIV (Particle Image Velocimetry) and UVP (Ultra-
sound Velocity Profilometry) techniques. These exper-
iments investigate the flow through various parts of the
blood vessels and help to understand better various phys-
iological and pathological phenomena (i.g. atheroscle-
rothic disease, aneurisma, etc.). To compare the mechan-
ical properties of physical models mentioned above and
real tissue, simple traction experiment is proposed. Estan,
silicon and porcine aorta samples undergo the mechanical
testing. The experimental data are examined and fitted to
viscoelastic and/or hyperelastic models. As a result of the
fitting process, a set of material moduli is obtained. These

Figure 1: Estan model of vascular vessels.

material moduli characterize the mechanical properties of
the material under consideration.

The models should be predictive in such a way that
using the determined material moduli and prescribing

new boundary conditions, i.e. the deformation of the
sample, the models should give appropriate and credible
resulting stress/force evolution in time. They should also
indicate the suitable model of the vessels, that is type of
silicon or estan, number of layers, technology of prepara-
tion, etc.

Previously, vascular wall was experimenally studied
in [3]. Incremental stress-relaxation measurements were
made on strips of relaxed smooth muscle excised from
cerebral vessels. Generalized Maxwell models are ap-
plied to fit the experimental data and to obtain the vis-
coelastic moduli. Similar method was adopted in this
work.

Materials and Methods

Estan and silicon flat specimens were cut from the phys-
ical models in three different directions (see Figure 2).
The initial dimensions of the specimens are as follows:
100 mm length, 54 mm width, 0.42 mm thickness, giv-
ing the total cross-section area 22.68 mm2. Each sam-

Figure 2: Estan and silicon specimens’ shape.

ple was loaded in traction according to measuring proto-
col. In this stress-relaxation experiment, constant strain
increment was prescribed and stress was recorded (see
Figure 3). The experimental data were processed in
MATLAB R©. Recorder data were filtered to reduce the
noise of the output signal.

Measuring apparatus was designed and constructed at
the laboratory of l’Equipe de bioḿecanique cardiovascu-
laire of IRPHE, Marseille. The scheme of the measuring
apparatus is presented on the Figure 4. The apparatus al-
lows to test flat samples and tube specimens with the in-
ternal pressure applied. The actual width of a flat sample
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Figure 3: Strain and stress evolution in time and detail
view of the displacement and tension data.

is registred by camera.

Figure 4: Scheme of measuring apparatus.

As a preliminary study, porcine abdominal aorta sam-
ples were tested as well to obtain the stress-strain relation.
Strips of the tissue were cut off the aorta and glued be-
tween two metal plates, than inserted between the jaws of
the traction machine. The tissue was not kept in any solu-
tion during testing to prevent drying of the sample since
the apparatus does not allow this option yet. Continuous
elongation was prescribed as a boundary condition up to
the rupture of the specimen to obtain the relation between
Green strain and Kirchhoff stress. This relation was not
fitted with any constitutive law and material parameters

Figure 5: Aorta sample preparation.

were not identified since the experiments on aorta are
considered as a preliminary study only. This should be
done in the nearest future to compare the properties of
the artificial and real materials.

Figure 6: Left: 5-parameters Maxwell model. Right:
Slack length element.

First model, selected for material data indentifica-
tion of the estan and silicon material, was generalized
Maxwell model withk branches, i.e. simple viscoelastic
1D model composed of springs and dashpots. Relaxation
of this model is described by stress evolution in time as
follows

σ(t) = EPε+
n

∑
k=1

Ek
Sε exp(−t/τk) , (1)

whereEP is an elastic modulus of a single paralel spring,
Ek

S is the elastic modulus of thek-th spring-dashpot
branch, τk = ηk/Ek

S is the relaxation time of thek-th
branch,ηk is the viscosity of thek-th dashpot,ε is strain
increment andt is time. Up to five element model was
used.

To treat the assumed viscoelasticity, generalized non-
linear 3-parameter model with a slack length element was
also applied. This model allows to introduce large defor-
mations via strain energy term. Slack length element ex-
presses the fact that the material can transmit only tension
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 but no compression. In fact, it is the uniaxial Kelvin (3
parametric) model with the discrete relaxation spectrum
(i.e. structural damping sensitive to frequency of load-
ing). For more details, see e.g. [1, 4]. The viscoelastic
stressτ is a function of the (nonlinear) elastic response
σ and the internal stress-like variableq, such that the fol-
lowing equation holdsτ = σ −q. Non-linear response is
expressed in terms of the strain potential functionw,

σ =
∂

∂ε
w(ε), (2)

The internal variableq satisfies

q̇+
1
tε

q=
γ

tε
σ , lim

t→−∞
q(t) = 0, (3)

with non-dimensional relative moduli (between 0 and 1)

γ =
E

E+E∞
, γ∞ =

E∞

E+E∞
, γ+ γ∞ = 1. (4)

Relaxation times may be defined as

tε =
η

E
, tσ =

tε
1− γ

(5)

whereE is the elastic modulus connected in serie with the
viscous elementη , E∞ is the elastic modulus connected
in parallel to them. Eliminatingq leads to governing dif-
ferential equation

τ+ tε
dτ

dt
= (1− γ)(σ + tσ

dσ

dt
). (6)

The explicit formula forσ may be derived as follows

σ(t) = γ̄

τ(t)− γ

t∫
t0

exp[−β (t−s)]
d
ds

τ(s)ds

 (7)

whereγ̄ = 1/(1− γ). Choosing the appropriate form of
the energy potentialw(ε) leads to various models. Note
that the quadratic form leads to the standard linear solid
model. Introducing the slack length parameter allows the
material to transmit tension only after its straightening
while in compression it cannot transmit any load. This
behaviour results in the fact that the bulk stiffness of the
material increases as the stretch progresses. This is a be-
haviour of e.g. collagen fibers. The properties of the ma-
terial can be described mathematically using complemen-
tarity relations involving the actual strainε f (t), the Green
strainε(t) and the viscoelastic stressτ(t):

ε f (t) ≥ ε(t)− ε̄0,

τ(t) ≥ 0, (8)

τ(t) · (ε f (t)− ε(t)+ ε̄0) = 0.

Discretization of the problem results in following expres-
sions:

τ̃
(n+1) =

1
c
[(1− γ)σ (n+1)+ γ(exp(−β∆t)h(n)

−exp(−β∆t/2)τ(n))],

τ
(n+1) = max{0, τ̃(n+1)}, (9)

h(n+1) = exp(−β∆t)h(n)

−exp(−β∆t/2)(τ(n+1)− τ
(n)).

Herec= 1− γ exp(−β∆t/2) andβ = 1/tσ . Thus, given
the history parameterh(n), we first compute the trial ten-
sion τ̂(n+1). The complementarity relations (8) now yield
the projection stepτ(n+1) =max{0, τ̃(n+1)}. Finally, we
update the history parameter. For initialization of the re-
currence we assume

τ
(0) = (1− γ)σ (0), h(0) = 0. (10)

Following form of the non-linear response was selected:

σ
(n+1) = Dexp[κε

(n+1)− ε̄0]−σ0. (11)

Here, vectorε(n+1) represents the known experimental
values of the deformation of the material under consid-
eration. Thus, we have six material parameters to deter-
mine: γ,σ0, ε̄0,D,κ andβ .

Further, hyperelastic Mooney-Rivlin and Hart-Smith
noncompressible models were applied. These models are
characterized by the strain energy density functionswm

andwh, respectively,

wm = c1(I1−3)+c2(I2−3), (12)

wh = c3

∫
exp[c4(I1−3)2]dI1+c5 ln(I2/3), (13)

whereci , i = 1, . . . ,5 are material moduli of the models
andI1, I2, I3 are the strain invariants of the right Cauchy-
Green deformation tensor. The 2nd Piola-Kirchhoff
stress tensor follows fromSi j = ∂w/∂εi j , wherew stands
for the appropriate energy function andε for strain.

Data identification was performed in MATLABR© us-
ing the built-in functions of the optimization toolbox;
lsqcurvefit and lsqnonlin based on the least-
squares method using Levenberg-Marquardt and/or large
scale algorithm. For details, see [2].

Results & Discussion

A huge set of material parametersEp,Ek
S andηk that de-

pend on the strain was identified for each specimen of es-
tan and/or silicon. The generalized Maxwell models are
regarded as linear and quasi-static in respect to each step
of stretch. However, the stress and the moduli have, in
general, a non-linear behaviour depending on the relative
strain. For a better visualization of the resulting moduli,
the values were fitted by polynomial, see Figure 7.

Estan moduli show approximately linear dependence
on the relative strain up to 50% deformation. Paral-
lel elastic modulus is a decreasing function of the strain
while the serial moduli correspond to increasing function
of the strain. The magnitude of the elastic moduli of estan
is of the order of 106 Pa. Viscous moduli (damping) show
linear character as well with the magnitude of 108 Pa·s.

Situation is more complicated in the case of silicon
material. The linearity is no longer apparent in the case
of silicon samples. The parallel modulus decrease up to
50% of strain, than remains almost constant up to 150%
of strain and after this value it starts to increase. How-
ever, in contrast to estan samples, silicon specimens were
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Figure 7: Estan (top) and silicon (bottom) moduli identi-
fied by fitting the experimental data with generalized 5-
parameters Maxwell model.

stretched up to 250% of the initial length. Changing the
scale of graph on the Figure 7 would show correspon-
dance between estan and silicon material within the inter-
val 0–50% of strain. The serial moduli are again increas-
ing functions of the relative strain. The absolute values
are smaller than those of estan, however, the magnitude
is same, 106 Pa. The viscous moduli increase as well, the
slope of the curve increase significantly beyond 200% of
stretch. Again, the absolute values are smaller than in the
case of estan but the magnitude remains same, 108Pa·s.

Non-linear model with slack length element was ap-
plied only to small part of the output data, i.e. to two
stretch cycles. The identification uses large scale algo-
rithm based on gradient methods; changing values of six
material parameters demands huge computational capac-
ity and large time intervals. This model is therefore not
appropriate for large experimental data, however, the pre-
cision of the fitting is more than satisfactory and model
allows to fit more than one step of stretch in contrast to
previous linear Maxwell models. The stress-relaxation
phenomena is fitted in more realistic way. Example of

fitting of silicon experimental data is presented on the
Figure 8. Table 1 shows material moduli of the non-linear

Figure 8: Fitting the experimental silicon data with non-
linear viscoelastic model.

model with the slack length parameter determined for two
steps of strech of a silicon sample.

Table 1: Non-linear material moduli of silicon.

D=9.98· 105 [Pa] κ=69.31 [−]
σ0=1.01· 105 [Pa] ε0=2.09 [−]

γ=0.18 [−] β=0.79 [s−1]

Finally, hyperelastic moduli were assessed. The ex-
ample of the results of the fitting process are shown on the
Figure 9. Stress-strain dependence was fitted by Mooney-
Rivlin and Hart-Smith models that are defined by strain
energy density functions (12) and (13), respectively.

Mooney-Rivlin model gives satisfactory results up to
180% of the initial length. After this value, the dis-
crepancy between experimental data and numerical val-
ues from the fitting process is apparent. Behaviour of the
material is more accurately characterized by Hart-Smith
model. Experimental and numerical data correspond up
to 280% of the initial length of the specimen. As an ex-
ample of the material moduli determined, following may
be mentioned:c1= 111 kPa,c2= 226 kPa,c3= 246 kPa,
c4= 14831 [−] andc5= 0.0298 Pa.

Aorta strips cut in circumferential direction off the
porcine abdominal aorta were tested in traction and the
stress-strain dependence was registred up to possible rup-
ture of the sample. Figure 10 shows measurement of three
different samples in comparison to results available in lit-
erature [5]. Experimental curves show good consistency
up to 140% of the initial length. However, significant dis-
crepancy with the results presented in [5] is apparent but
not surprising. The results from the experiments on soft
tissue differs very often between laboratories in depen-
dence on the method employed, conditions of the experi-
ment etc.
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Figure 9: Fitting the experimental data with Mooney-
Rivlin (top) and Hart-Smith (bottom) model.

Conclusion

Simple traction experiments were performed on estan
and silicon materials in order to investigate the stress-
relaxation phenomena. These materials are used to cre-
ate the physical models of blood vessels for the experi-
ments investigating blood flow. Three types of models
were used to fit the experimental data. Firstly, general-
ized Maxwell viscoelastic model was used to fit the evo-
lution of stress in time. The model fits the experimental
data in each step of stretch independently; from this point
of view, it is linear and quasi-static model. However, re-
sulting moduli are approximately linearly dependent on
the relative strain with the magnitude of elastic and vis-
cous moduli of the orders of 106 Pa and 108 Pa·s, respec-
tively. Secondly, non-linear viscoelastic model with the
slack length element was applied. This model permits
to fit precisely a number of stretching steps but demands
huge computational capacity. Lastly, simple hyperelas-
tic models were employed to fit the stress-strain relation.
Mooney-Rivlin model gives good results up to 180% of
the initial length. Hart-Smith model characterize very
good behaviour of the material under consideration up to
280% of the initial length.

Figure 10: Stress-strain relation of porcine abdominal
aorta.

Porcine abdominal aorta samples were examined as
well. However, this part of the work is considered as a
preliminary study. Stress-strain relation was measured
and compared to data available in the literature. Mea-
sured data are in good agreement. Significant discrep-
ancy is apparent when the data are compared with results
presented in [5]. However, in the case of soft tissue, the
results are not consistent very often between laboratories.

The authors would like to design a method for man-
ufacturing suitable physical models of blood vessels for
the PIV and UVP experiments that would respect vari-
ous properties of real tissue based on the experiment pre-
sented in this work. This is a subject of future work.
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