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Abstract: This paper aims to present a tool to 
express biosignals through patterns. To accomplish 
this we propose a hysteretic neural network 
architecture to extract knowledge from EEG time-
series, useful in EEG signals representation for 
classification and decision. This approach may be 
interesting for brain computer interfaces, as a 
technique for data preprocessing for real time 
response tasks. The proposed architecture and 
training strategy is described in detail. This new 
architecture allows the use of a relatively small 
nonlinear network to produce similar performances 
as other larger ones cited in literature to be used for 
the same purposes. Simulation results reflect the 
applicability to brain computer interface of this 
type of artificial neural network signal processing 
tool. 
 
Introduction 
 

Real-time brain-computer interface (BCI) systems 
involve analysis of bio-signals to drive the activities of 
a computer, most of the tasks being mainly related to 
the classification problem. This problem is, in turn, 
linked to that of pattern extraction from raw 
electroencephalogram (EEG), electrooculogram 
(EOG), electromyogram (EMG), galvanic skin 
response (GSR), electrocardiogram (ECG) data, 
eventually integrated with functional magnetic 
resonance imagery (fMRI), in order to represent 
specific mental activities or to locate targets.  

Some approaches concern mu waves of the EEG 
analysis. These recordings are usually associated with 
the motor cortex. They are diminished in amplitude 
with movement or the intention to move. An approach 
to identify an attempt to move may explore the 
characteristics of this rhythm. Some linear methods 
were devoted to analyze them ([18]). The open 
problem is that of discriminating between different 
movement tendencies.  

Other approaches involve pattern recognition 
algorithms in the attempt to detect signature patterns of 
EEG activity which correspond to volitional behaviors. 
The eventual aim is to develop a vocabulary of EEG 
signals that are recognizable by the computer. The 
correlation of EEG with EMG or EOG offers the 

possibility of the creation of a thought pattern 
vocabulary. The implementation of this attempt with 
artificial neural networks is a promising technique, but 
the training period may be laborious in order to obtain 
a high percentage of accuracy in matching particular 
thoughts with brain wave patterns. 

Different artificial neural network (ANN) 
architectures may be involved in extracting patterns 
from biological signals (J. Principe group [14], G. 
Pfurtscheller group [9], C. Anderson [8], S.J. Roberts 
[11], [12]). 

This paper focuses on the EEG data representation 
with hysteretic ANN.  There are two main types of 
hysteretic ANN-s: those which develop hysteresis in 
their behavior, although they are not compound of 
processing elements with  explicit hysteretic 
nonlinearity, and those called “hysteresis neural 
networks” by some authors, including K. Jin’no [6], 
made up of processing elements with  explicit 
hysteretic nonlinearity, usually binary hysteresis. We 
address to both of these types of networks in the 
present paper, using the generic name of “hysteretic 
artificial neural networks” (HANNs).  The main 
contribution of the paper is to make a connection 
between three items: 

 the concept of pattern language, 
 recurrent hysteretic ANN dynamics 

representation capacities, 
 solving the problem of expressing thoughts 

through EEG data readings means. 
In the following section of this paper we summarize 

the concept of pattern language, in the attempt to link it 
with our contribution, hysteretic neural networks 
representations. The third section is dedicated to the 
presentation of the conceptual framework of our 
approach. In the forth section of the paper the current 
realization of the hysteretic network is described. This 
article closes in the fifth section with conclusion and 
outlook to further work. 
 
Pattern language 
 

One of the definitions of the pattern language ([7]) 
states that it is a structured collection of patterns that 
build on each other to transform reality into pattern 
architecture. The patterns are related through rules to 
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 problems solutions. Rules may be encoded in circuit 
connections which rand a particular sequence of 
patterns. This can be done with artificial neural 
network type systems, for instance. The goal of a 
pattern language is to use pattern forms to capture the 
essential insight of a problem embedded in a specific 
environment, so that others may make use of it in 
similar situations. 

There are many definitions for patterns. One of 
them ([19]) states that “a pattern is the abstraction from 
a concrete form which keeps recurring in specific non-
arbitrary contexts”. We may say that redundant data 
resulting from a specific environment, in a specific 
situation, embed a certain piece of information. We 
wish to extract it and encode it in an abstract form, 
dependant on the tool chosen for encoding. Such 
abstractions may serve to a better election of actions, 
following a certain classification process. 

Relative to signal processing, we would like to have 
a special vocabulary for expressing common 
characteristics, and a language for relating them 
together. In the ANN’s world the language is related to 
the parameters of the network which perform a specific 
processing task. Codifying the solution of a problem 
with patterns and their relationships permits to capture 
the body of knowledge which defines our 
understanding of the appropriate tools to meet the 
needs of that problem. As an element of language, a 
pattern shows how this spatial configuration can be 
used, over and over again, to resolve the given system 
of forces, wherever the context makes it relevant. 

Recurrent neural networks are synergetic devices, 
usually with a convergent behavior to a steady 
attractor. In this case it may be associated with a 
pattern or with a sequence of patterns. 
 
Hysteretic neural network architecture 
 

Many cooperative dynamical systems manifest 
hysteresis. Hysteretic behavior was observed at 
animals, as well as humans, being mostly related to the 
activity of the central nervous system [2], [20]. 
Transitions between movements, during locomotion, or 
cyclic lumbar flexion, exhibit hysteresis [1], [16]. 
Hysteretic behavior was also related to the selective 
attention, which, in turn, is linked with the input 
unsupervised preprocessing by the neural network and 
with the quality of the associative memory [6].  

Hysteretic processing may be used to extract the 
increasing or decreasing parts of the input signals, for 
their independent processing [3]. Some second order 
recurrent artificial neural networks (RANNs) were 
proved to have intrinsic hysteretic behavior, if they 
have a sufficiently large positive feedback, 
independent of the monotony or non-monotony of their 
nonlinearity [17], [15]. A general form of the system of 
equations describing the dynamics of the recurrent 
neural structure with hysteretic behavior is given 
below: 
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All the other forms of equations describing RANNs 
with hysteresis are special cases of these ones (see [6] 
and [20] for instance). 

Matrix B is responsible of the link with the 
environment, weighting the external control and I is the 
offsets vector, while A is the interconnection matrix, 
reflecting the feedback in the network. No matter the 
form of f is, z(t) will have a monotonic or non-
monotonic variation, depending on the positive values 
of the elements of C and H. Variable x(t) will develop 
hysteresis because of its dependence on y(t), and so, on 
v(t). An example can be seen in figure 1. Equation (4) 
models the linear restriction upon the feedback, also 
responsible for the hysteresis effect. The hysteresis is 
showing when the components containing reactions 
became positive. It is also connected to the existence of 
more then one equilibrium points, for which distinct 
branches of stabile state variation are identified, which 
may be controlled by changes in the values of different 
parameters of the system ([4]). 
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Figure 1: Hysteresis for x varying on behalf of v, 
resulted from equations (1), with (a) f(z) = th(z) and (b) 
f(z)= exp(-z.*z); The input-output characteristics for I 
=0 (a),   (a’), and for I = 2 (b); (c) x variation through 
time; (d) the coresponding y variation through time; (e) 
the derivative of one of the state variables for the (a’) 
behavior; (f) excitation u 
 

Figure 2 represents the block diagram for the 
implementation of equations (1)-(4). The nonlinearity f 
had been chosen to be a sigmoid of the type hyperbolic 
tangent, for the results depicted in figure 1. 

 
 

s
1

s
1

f 

Dj 

E j 

Cj 

H j 

Ij 

B j 

A j 

Σ 

Σ  

Σ  

+1 

- 

+  

+ 

+ + 

+ 

+ 

vj

y 

v 

u  

jx& xj 

yj

 
Figure 2: The block diagrame of a hysteretic oscilator 
 
Recurrent networks perform associative memory, in 
form of stable states or stable limit cycles. This may be 
seen as an association between several forms presented 
at the input and a converging behavior resulted at the 
output of the network. When we have a network of 
hysterons (processing elements exhibiting hysteresis), 
the adaptation of the network can be done through the 
lateral connections (A in (2)) or through the control 
ones (B in (2)), or both. 
The most frequent used models of artificial neural 
networks with hystertic behavior are the “hysteresis” 
ones. In this way the order of the network depicted in 
(1) – (4) is reduced to one, so the network is easily to 

design. A simple network with binary hysteresis, with 
only one variable parameter for each processing 
element was described in [6]. More general network 
equations are: 
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The parameters notation was conserved from the 

previous equations. In figure 3 a binary hysteresis 
neural network Simulink implementation is presented. 
 

 
 
Figure 3: The hidden layer with binary hysteresis 
processing elements 
 

Whatever the implementation of the hysteron is we 
are interested in the job it does in extracting features 
from EEG signals presented at its input. The adaptation 
algorithm is of Hebb type (Sanger algorithm) for 
principal component analysis (PCA), for the B weights: 
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For the lateral connections of the hysteretic layer of 
the neural network an anti-Hebbian type of learning is 
considered: 
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The Simulink implementation of the learning 

algorithm (7) is presented in figure 7. Because of the 
nonlinearity considered, this layer tends to extract 
higher-order statistics of the input space. The aj(t) 
vectors shown a rapid convergence to 0 for proper 
choices of the learning parameters and initial 
conditions, as shown in figure 8. Moreover, the input 
projections obtained at the output of the hysteretic 
layer tend to be as uncorrelated with each other as 

Matrix 
Multiply 

B*X 

Term 

Sum 

Me
m 

Y

Eta

X

X0

B

LearnB 

Eta

Y
A

LearnA 

X

Input 

Hyst 

0.1 

Eta Matrix 

Multiply 

A*Y 

z-1*D 

-

0 200 400 600 800 1000 1200 1400 1600 1800 2000 -4

-3

-2

-1

0 1 
2 3 
4 



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 possible, taking in consideration that the eigenvectors 
approximated by the hysteretic layer are not 
orthogonal, providing the basis for a better 
discrimination in an eventual following supervised 
classifier (figure 4). Only stable output vectors 
correspond to an important piece of information 
(solution of the nonlinear PCA problem). Stability of 
hysteretic neural networks was analyzed respectively in 
[17] and [6]. This paper aims to apply such kind of 
networks to EEG preprocessing. 
 
Results 
 

We have used EEG data from Purdue University, 
available from Internet, to test our particular methods 
of signal representation and classification. This 
approach allow us the verification of the method, 
comparing our results to those obtained at Purdue 
University and Colostate University [7], where these 
data were also used to test other representation 
algorithms. Data are presented to the Simulink 
implementation of the hysteresis ANN in the form of 
data sequences of 6x2500 dimension each. Data are 
labeled, so we are able to train the network to classify 
groups of signals, belonging to the same label. The 
hidden layer of the network depicted in figure 4 is a 
hysteretic one, with the parameters trained in an 
unsupervised manner, as mentioned in the previous 
section. The entire network has a hybrid training, 
which includes supervision on the output layer. The 6 
rows of EEG data correspond to channels c3, c4, p3, 
p4, o1, o2, defined by the 10-20 system of electrode 
placement described in [8]. The 2500 samples of data 
correspond to a 10 seconds recording of 250 Hz 
sampling rate. The training strategy consisted in 
presenting packages of 10 fragments (corresponding to 
trials) per tested subjects, 5 subjects per epoch, two 
tasks to be classified and one rejection group of 10 
fragments of 10s EEG recordings. There were 275 000 
samples of 6 characteristics each of data per epoch, 
repeatedly presented to the network until convergence, 
which was reached after about 5x108 samples, which 
seem to be a good result, compared to those presented 
in [7] and [8]. The network used to represent the EEG 
data is depicted in fig. 3 and 4. There were used two 
types of hysteretic processing element, one with 
rectangular type hysteresis nonlinearity and another 
with a functional hysteresis, as that depicted in figure 
2. The representation layer of the network (hidden 
layer) consisted in 3 to 5 sub diagonal connected 
neurons. The output supervised layer may be added for 
classification purpose, the number of neurons being 
correlated with the number of classes to discriminate. 
Although the activity differs greatly from one patient to 
the next, and even within recordings from the same 
patient, all of them do seem to follow a general pattern 
that characterizes the particular activity. This is 
reflected in figure 6. 
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Figure 4: The block diagram of the classification 
network  
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In equations (8) f reflects the hysteretic behavior of 

elements y1. The network is trained to produce a 
pattern to express the mental activity embedded in the 
corresponding fragments of EEG recordings. Such 
patterns may be used as vocabulary for EEG 
understanding by a specialized device in a 
classification task. 
 

 
 
Figure 5: EEG waveforms from the 6 channels, from 
one subjects, performing a mental task 
 

      
 
Figure 6: Fragments of ½ s correlated with different 
mental activities. 
 
Discussion 
 

The primary purpose of this experiment was to 
explore the possibility of a hysteresis neural network to 
extract pattern from fragmens of EEG recordings 
correlated with particular mental activities. Its usability 
is seen in the field of brain computer interface research, 
as well as in that of pattern language. The special 
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 nonlinearity used in the processing elements 
architecture presented a good performance for the task 
of pattern extraction, especially the one with smooth 
slope of nonlinearity. Further work is needed to 
evaluate the classification performance based on these 
patterns. 
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Figure 7: Block diagram of the learning algorithm for 
the lateral connections 
 

Figure 8: Dynamics of A weights 
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