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Abstract: The investigation of large-scale neural in-
tegration by synchronization is essential for the un-
derstanding of the brain organization. Up to the pre-
sent, transient phase synchronization is one of most 
suitable concepts for a neural interaction process ex-
planation. This paper deals with the quantification 
and detection of the bivariate phase coupling. Here 
the most applied phase synchronization parameters 
in neuroscience i.e. phase locking value (PLV) as well 
as Shannon entropy parameters are compared. The 
features of these approaches can directly be tested on 
generated circular data without estimating instanta-
neous phases. For this purpose, instantaneous phase 
sets with defined probability distributions are gener-
ated. The results of the study show that the PLV 
represents the most suitable analysis method for de-
tecting phase synchronization in noisy signals. 
 
Introduction 
 

The investigation of electrophysiological brain sig-
nals, acquired during the execution of cognitive proc-
esses revealed that transient cooperation of numerous 
functional brain regions are realized by dynamic inter-
actions of widely distributed neural assemblies sepa-
rated by large distances that transmit signals constantly 
to each other. In the literature, such interactions have 
also been addressed as “large-scale synchronization” [1] 
and can be investigated by bivariate analyses (relation 
between two localisations). Hypothesised that during 
cognitive acts the interactions of neuronal populations 
may be realized as phase synchronous activities present 
for a certain time window, the information about the in-
stantaneous phases of the (scalp acquired) brain signals 
provides an important index to such large-scale syn-
chronization phenomena. For this reason, such interac-
tions are also known as phase synchronizations [1]. Ad-
ditionally, integration of nerve cells to an assembly is 
called local synchronization which can be observed by 
univariate analyses like ERD/ERS [2]. It is to be em-
phasized that several neurological diseases such as epi-
lepsy or Parkinson manifest a pathological form of the 
phase synchronization processes. 

The mathematical approaches to quantify such large-
scale interactions constitute a bivariate phase coupling 
analysis, which is generally implemented by a methodi-
cally linear way. After data acquisition and pre-
processing not only the extraction of instantaneous 

phase information, but also the phase quantification is 
performed for each channel in order to compute events 
of phase coupling. Finally, a significance test follows. 
Respecting the great variety of existing phase quantifi-
cation parameters, the gist of the study presented is the 
comparison of phase quantification parameter and the 
selection of the most suitable one for the succeeding 
bivariate phase coupling detection. 
 
Materials and Methods 
 
General Procedure 

The single steps in the signal processing depend on 
the problem to be investigated and on the quality of the 
recorded data. In general pre-processing, phase extrac-
tion, phase quantification and detection steps are con-
sidered. In case of EEG signals, pre-processing usually 
consists of a filtering of the raw signals (e.g. Laplacian, 
second spatial derivation) as well as of a band-pass fil-
tering. The second step, the extraction of instantaneous 
phase information, takes place by Short-Time Fourier-
Transform (STFT), Hilbert-Transform or Wavelet-
Approach. The differences of the mentioned fundamen-
tal methods to extract instantaneous phases were already 
discussed extensively by Bruns [3]. The author of this 
study concluded that these approaches constitute no dif-
ference on a certain level, and thus all these approaches 
should be formally and effectively equivalent. The cur-
rent paper can be understood as developing the conse-
quence of the Bruns study further. The extracted instan-
taneous phases of two channels are analyzed in terms of 
phase coupling by using either entropy parameters or, 
more generally, by using phase coupling indexes. To 
test the statistical significance of such coupling indexes, 
a nonparametric binary test is commonly used, since in 
this case no a-priori hypotheses concerning the distribu-
tion of the phase data are required. Permutation methods 
or methods of surrogate data are used to test the cou-
pling indexes against the background fluctuations [4], 
while bootstrap methods deliver a confidence that can 
be contrasted with the one of another interval [4]. 

In particular, this work focuses on the third step fol-
lowing the methodically order, namely the possible op-
portunities to quantify phase coupling values. Adequate 
data acquisition, pre-processing and extraction of the 
instantaneous phases were assumed to be already per-
formed successfully. Furthermore, the final statistical 
step could be a special topic of further works. 
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Phase synchronization 

The transformations of the real valued data in step 
two provide complex coefficients Cx and Cy, while the 
instantaneous phase of each channel corresponds to the 
angle of their complex coefficients. Phase synchroniza-
tion is realized, if the difference of these two instanta-
neous phases φx and φy, the so called relative phase θ, is 
equal to zero. This definition means a very strong con-
straint and is hardly applicable to real data. For this rea-
son, a weaker definition was postulated for irregular or 
non static oscillation systems as exemplified by the 
brain, where events of phase synchronization are found, 
since the relative phase may stay constant over several 
epochs (trials) or within selected time intervals, gener-
ally over a representative sample. 
 
Phase quantification parameters 

In quite diverse fields, long history efforts of devel-
oping phase quantification methods can be found. The 
underlying objective of such attempts was the quantifi-
cation of coupling phenomena either taking place in 
natural subsystems or nonlinear dynamics of technical 
systems. In the field of neuroscience, phase synchroni-
zation has been defined just for the bivariate case so far, 
a constraint possibly done for the sake of simplification. 
The most frequently used fundamental parameters in 
order to detect instances of phase synchronization are 
Shannon’s entropy as well as phase locking value PLV, 
phase coherence or phase consistency respectively. The 
application of Shannon entropy as phase coupling 
measure was introduced in form of a standardized and 
slightly modified version by Bhattacharya et al. [5]. Ac-
cordingly, perfect synchrony should be realized (index 
equal to one), if the relative phases are δ-distributed. In 
addition, the signals are regarded to be independent (in-
dex equal to zero), if the relative phases are uniformly 
distributed onto the circle indicating the maximal en-
tropy: 

( ),max 2logH Mθ = . (1) 
Thus, the strength of phase synchronization is expressed 
as deviation of circular uniform distribution and is quan-
tified by the index called modified standardized Shan-
non entropy of the relative phase: 
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with the entropy defined by: 
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where M represents the number of bins, and pi the prob-
ability of the relative phases within the ith bin. Accord-
ing to the investigations of R. Otnes and L. Enochson 
[6], the optimal number of bins should be 0.626 0.4 ln( 1)Ne + − , 
where N is the number of samples. Furthermore, a 
modified application of Shannon's entropy is known as 
joint entropy [7], which considers the both phases: 
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Pi,j denotes  here the joint distribution of the both instan-
taneous phases. We assume that the investigated instan-
taneous phases are equal in their number of samples. 
The corresponding phase coupling index is defined in 
the same way as the Shannon entropy with the only ex-
ception that the impact of the number of samples is 
double for maximal joint entropy: 
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H Mϕ ϕ =  (5) 

Another approach to detect phase coupling is the so 
called PLV, also known as phase consistency or phase 
coherence that was started to get most prominently in-
troduced in the field of neuroscience by Lachaux [8]. 
The PLV index is defined as an averaged value that 
measures the variability of the relative phase within a 
representative sample (over a set of experimental trials 
or epochs for example): 
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More precisely, this phase coupling index evaluates the 
relative phases in the form of their angles onto the unit 
circle in the complex (Gaussian) plane. PLV is similar 
to the definition of coherence, except that amplitude 
contributions of the complex coefficients are eliminated. 
So if the phase difference varies a little across the sam-
ple, the index is close to one, otherwise the index results 
in a value close to zero. 
 
Formal Comparison 

Phase coupling indexes based on entropy required 
the estimation of discrete probabilities or their corre-
sponding histograms, respectively. Hence, the continu-
ous and closed-phase space [0, 2π) is subdivided into 
finite elements. As found out by R. Otnes and L. 
Enochson an optimal number of elements in terms of 
linear histogram can be approximated based on the fact 
that different numbers of bins result in different estima-
tion of histograms that differ in accuracy. In addition to 
the proposed bin estimation, there is still another adjust-
able parameter affecting the uncertainty of a given esti-
mation. Circular data provides an angular histogram. 
And, in contrast to linear histograms, angular histo-
grams involve an arbitrary choice of the starting point. 
A non appropriate choice of the starting point for the 
elements (0°, 10° etc.) can result in serious distortion of 
probability information in the sample about the localiza-
tions of modal groups. Finally, entropy parameters de-
pend on probability estimation and consequently on the 
number of finite elements (discretization), and more im-
portantly, in case of circular data on the starting point of 
circular division. Applying entropy parameters to circu-
lar data delivers a bimodal phenomenon due to the lin-
earization of circular data. I.e., if the phase sample is 
grouped a modal way around a mean direction of 0°, a 
linearization at starting point 0° cause a false estimation 
of bimodal probability distribution. In contrast to the 
entropy based phase-coupling measures, the PLV-index 
requires no additional estimation and, thus, no addi-
tional parameters must be adjusted. In this considera-
tion, the PLV represents advantageously phase coupling 
index than entropy based indexes. 
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 Data 
 

To compare the selected phase quantification pa-
rameters that determine the phase coupling, sets of cir-
cular data are simulated. Due to the fact that the phase 
coupling parameters are computed only along one di-
mension of the representative sample (i.e. parameters 
represent one-dimensional operators) the features of 
each approach could be tested directly on circular data 
without estimating instantaneous phases. Hence, sup-
posed that the fundamental approaches are the same, it 
is not necessary to generate multi-trial circular data as 
well as real valued single-trial and multi-trial data sets. 
Therefore, bivariate data sets of (instantaneous) phases 
with defined probability distributions, in order to en-
gender phase synchronization, are created by a random 
generator, which are based on certain statistical models. 
For the purpose of detecting phase synchronization, the 
following postulate could be formulated. The distribu-
tion of representative samples like a set of trials is uni-
modal. Hence, zero valued PLV-indices are excluded 
following the reason of symmetric multimodal phase 
distribution (higher order). 

The most common unimodal distribution model for 
circular data, the von Mises Distribution [9] was used to 
generate random phases: 
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where I0(κ) describes the modified Bessel function of 
order one. This distribution converges to circular uni-
formity, if the concentration factor κ is close to zero and 
otherwise the distribution shows a tendency towards the 
δ-distribution concentrated around the mean direction µ. 
The simulation of von Mises distributed random phases 
was performed in accordance to an algorithm of Best 
and Fisher [9]. Another unimodal circular distribution 
model called Wrapped Normal Distribution is derived 
from the Normal or Gaussian Distribution in case of lin-
ear data, respectively. Both distributions are symmetric 
and satisfy the postulated unimodality. The Wrapped 
Normal Distribution and the von Mises Distribution are 
similar in appearance and differ only by a high order of 
sample sizes, in which the peak of the von Mises Distri-
bution is sharper [9]. Furthermore, it is possible to trans-
fer the parameters of both distributions to each other. 
These circumstances enabled us to represent also by 
means of the ordinary parameters of the Normal Distri-
bution. Finally, two discrete vectors of M=1000 circular 
pseudo-random phases were generated from the von 
Mises Distribution. Г=1000 realizations were pro-
duced in order to simulate different distributions. The 
mean direction for each data set was thereby fixed, i.e. 
adjusted to a radian of µx=1/4π for channel x and 
µy=2/3π for channel y. In contrast to the mentioned 
mean direction, the concentration factor was indirect 
specified in a nonlinear way based on linear adjusted 
ordinary (cycle) standard deviation σ for the sake of im-
proved illustration. If either one or both concentration 
factors are low, no phase coupling is present and thus a 
minor phase coupling index will be expected. Other-
wise, if both concentration factors are large (circular 

standard deviation is close to zero), a phase coupling 
index close to one will be expected. 
 

 

Figure 1: PLV-index dependence on concentration fac-
tor κ (or cycle standard deviation σ). The axes describe 
the parameters of two synthetic phase sets x and y. 

 
Results 
 

In the case of phase coupling index based on stan-
dardized joint entropy leakage effects were observed. 
The resulting index expected to be close to one, if both 
sample distributions are adjusted by a high concentra-
tion factor. But if one of the considered channels is 
closely δ-distributed and the second one deviated from 
the δ-distribution (is e.g. circular uniform distributed) 
then the channels are not phase synchronized, but the 
modified joint entropy index takes values higher than 
zero. Summarizing, this phase quantification index is 
not suitable for detecting phase coupling. The PLV-
index as well as the index based on standardized Shan-
non entropy evinces (in figure 1) spread punctually be-
haviour within the two dimensional channel parameter-
plane. Therefore, both indexes are expected to be close 
to one, if both channels are δ-distributed. And if either 
one or both phase sample distributions slightly deviate 
from the δ-distribution, the indexes decrease towards 
zero with different gradient. In general, both phase 
quantification parameters are suitable to detect bivariate 
phase coupling. The gradient for phase coupling index 
based on Shannon entropy is higher than the PLV gradi-
ent (see figure 2). Thus, the modified standardized 
Shannon entropy index is more sensitive to noise and 
probability deviations and, consequently qualitatively 
less suitable than the PLV-index. 
 
Discussion 
 

Principally two phase quantification approaches, the 
PLV (phase consistency or phase coherency 
respectively) and Shannon's entropy were under 
consideration. In case of Shannon’s entropy, the 
standardized as well as the standardized joint entropy 
were explicitly investigated. The formal comparison 
yielding that the PLV is more accurate than Shannon's 
entropy parameters, since the Shannon entropy required 
an additional factor to be estimated (i.e. histogram) 
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 necessitating the determination of two parameters. In 
contrast to Shannon’s entropy, the PLV- index is 
parameter free and, thus, generally easier to manage. 
PLV-index, phase consistency or phase coherence is a 
special parameter to quantify phases but Shannon’s 
entropy is defined for linear data in terms of statistics 
and thus only applicable to circular data. The simulation 
provided evidence that the joint entropy is not an 
eligible parameter to test phase samples on 
synchronization, since the probabilities of both phase 
samples made a separate and specific contribution. The 
other examined phase quantification parameters based 
on standardized Shannon entropy and the PLV obtained 
results indicating their suitability of detecting phase 
synchrony. The simulation results alowed the 
conclusion that the standardized Shannon entropy is 
more sensitive to noise than the PLV. Finally, the PLV 
is the most suitable phase quantification technique of 
the examined parameters in order to detect bivariate 
phase coupling. This index corresponds to the 
traditionally known definition of the mean resultant 
length and consequently to the definition of the first 
kind trigonometric moment (centred as well as 
uncentred) in statistical theory of circular data [9]. Thus, 
with our novel view in term of phase synchronization it 
is firstly possible to establish parametric tests. 
 

 
Figure 2: PLV-index and standardized Shannon entropy 
(y-axis) dependence on cycle standard deviation σ (x-
axis). 

 

Conclusions 
 

The main concern of this study was the comparison 
of the most common phase quantification parameters: 
PLV and Shannon’s entropy measures (standardized and 
joint entropy) that are applied to determine instances of 
phase coupling or synchronization. For this purpose, the 
fundamental techniques were described and compared 
in terms of their formal functionality and their parame-
ters. Furthermore, synthetic data sets of phases were 
produced to investigate the phase quantification parame-
ters suitability for the succeeding detecting aims. The 
data was produced by a random generator and the cou-

pling was adjusted by parameters of the underlying sta-
tistical model.  

As result of the study can be concluded that the PLV 
is the most suitable phase quantification method of the 
examined parameters in order to detect bivariate phase 
coupling. The equalization of the PLV index and the 
first trigonometric moment may enable more and even-
tually better statistics for testing the PLV on signifi-
cance. Additionally the comparison of parametric and 
nonparametric statistical tests for the purposes of phase 
synchronization detection should be investigated in fur-
ther studies. 
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