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Abstract: With its capabilities, artificial neural 
networks are currently gaining a major focus to 
solve various problems in genome informatics. We 
present a search by signal in genome sequence using 
artificial neural networks and statistical methods. 
More specifically, we used Bayes inference theory, 
incorporating prior knowledge for regularization 
learning, and evidence procedure for training the 
ANN. The prediction of the consensus sequence is 
obtained using principles of automatic relevance 
determination to discard less predictive nucleotides 
bases. We exemplify the approach in the 
identification of promoter sequences of Escherichia 
coli. We achieved models with an accuracy of 
approximately 99% using a very simple network. We 
predicted both the promoter consensus sequence and 
a sequence of improbable nucleotides. The former 
contains 19 nucleotide bases, and the improbable 
sequence has 35 relevant bases from the 57 present 
in the original sequence window. 
 
Introduction  

 
Genome informatics, a new field of computational 

molecular biology, involves, among others, methods for 
gene recognition, sequence functional analysis and its 
structure and family determination. Earlier approaches 
to gene recognition predict individual functional 
elements, using "gene search by content" or "gene 
search by signal" methods [1]. The content approach 
compares a genome sequence, with unknown function, 
to different sequences with known context features, 
usually stored in a database. The similarity between 
them is achieved using a similarity measure, called 
coding potential. For high correlated sequences this 
measure indicates the potential of the unknown 
sequence to code the know context features. 

 In the "gene search by signal" approach, functional 
signals represented by local binding sites involved in 
gene expression, recognized by the ribosomal 
machinery, such as splice sites, are represented by rules 
describing the consensus sequence or weight matrices 
showing the positional agreement of a nucleotide base 
and its counterpart in the window sequence. 

Gene prediction typically has two phases: coding 
region prediction and determining gene structure, 
known as gene parsing. Features of individual DNA 

functional elements and signals are obtained and then 
combined to form a gene model. The major features of 
interest are related with the promoters, exons, introns, 
intergenic regions, splice, and start sites of the genome 
sequence. 

Different methods for coding region prediction 
have already been reported in the literature, including 
the use of neural networks [2,3]. One of the first 
applications of ANN, involved the use of an adapted 
perceptron learning algorithm to predict ribosomal 
binding sites in Escherichia coli [4]. 

Artificial neural networks are currently gaining a 
major focus to solve various problems in genome 
informatics and molecular sequence analysis [5]. A 
neural network is characterized by the connections 
between neurons and its method for determining the 
connections weights; known as training or learning 
algorithms. Neural networks learn from examples and 
exhibit some capabilities for generalization beyond the 
training data [6]. This latter feature makes this 
computational model an important tool in applications 
with small or incomplete understanding of the problem, 
but where training data is readily available.  

This work presents a search by signal in genome 
sequence analysis using artificial neural networks and 
statistical methods. More specifically, Bayes inference 
theory, incorporating prior knowledge for regularization 
learning, and evidence procedure were used for training 
the ANN. The prediction of the consensus sequence is 
obtained using principles of automatic relevance 
determination to discard less predictive nucleotides 
bases from the original sequence window. We 
exemplify the approach in the identification of promoter 
sequences of the enteric bacteria Escherichia coli. 
 
Background 
 

Usually, network training is based on minimization 
of an error function. Within this framework, a more 
complex network, for instance with more units in the 
hidden layer, may produce a better fit to the training 
data, but when presented with new data its performance 
is very poor. This is known as the bias-variance trade 
off. To improve generalization, available data is usually 
split in training and validation sets, reducing the number 
of samples for learning. Additionally, the common 
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 training methods results in a single set of connection 
weights.  

The Bayesian learning approach uses all the 
available data for training. Furthermore, this approach 
considers a probability distribution function over the 
weight space, providing relative degrees of belief for 
different sets of the weight vector. This probability 
function is initially set to some prior distribution and, 
using observed data, the Bayes’ theorem provides the 
posterior distribution, which is used to evaluate the 
predictions of the trained network for new values of the 
input variables. 

The posterior density of the weights w of the 
network, given a data set D, is:  
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where p(w) is the prior distribution, p(D|w) is the 
likelihood, and p(D) is a normalization factor ensuring 
that the posterior integrates to one.  

The prior distribution reflects our initial lack of 
knowledge of the weight values. Giving the observed 
data, we update this prior distribution to a posterior 
distribution using equation (1). This distribution shows 
what we have learned from the observed data, 
improving the estimated values for the connection 
weights.  

To obtain the posterior distribution, we need to 
define expressions for the prior distribution, p(w), and 
for the likelihood function, p(D|w). We expect the 
underlying generator of our data sets to be smooth, and 
the network mapping should reflect this belief. A neural 
network with large weights may lead to a mapping with 
large curvature, and so we favor small values for the 
network weights. Common practice indicates the use of 
a Gaussian prior distribution, and the requirement for 
small weights suggests a distribution with zero mean 
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where α represents the inverse variance of the 
distribution, and Zw(α) is the normalization constant.   

Taking the negative log of this prior, ignoring the 
normalization constant, we obtain an error term 
identical to the weight decay described in regularization 
theory [7]. 
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This error term regularizes the weights by 

penalizing large magnitudes. Using Bayes’ theorem (1) 
and ignoring the normalization term p(D), which does 
not depend on the weights, we obtain the Bayesian error 
term for a model given by 
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For classification problems, when dealing with two 
classes,  the noise model, ED, using a cross-entropy 
error function, is given by [8] 
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It follows that the posterior distribution of the 

weights has the form 
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This posterior distribution (7) can be approximated 

by a Gaussian distribution with mean vector wMP, the 
most probable weight vector found by optimization of 
the total error function E = S(w), and inverse covariance 
A, the Hessian matrix of S(w) evaluated at wMP. The set 
of parameters α1, . . . ,αg can be learned from the 
training set using the evidence procedure described later 
in the paper.  

For predictions, we compute the integral over the 
posterior weight distribution. The probability that an 
input vector x belongs to class C1, is given by 
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If we assume that the posterior is sharply peaked 

around wMP there is still a problem because the output 
function y(a), usually a sigmoid function with a being 
the activation of the output neural unit, is not linear. 
This means that the prediction is no longer equals the 
most probable output y(x,wMP). 

Since a is a linear function of the weights, MacKay 
[9] assumes that it has a Gaussian distribution with 
mean wMP and variance s2 = gTA-1g, where g is the 
gradient of a with respect to the weights wMP. The 
integral in (8) does not have an analytic solution, 
therefore Mackay [9] suggests the approximation 
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and aMP denotes the logistic output a evaluated at wMP . 
 

The evidence procedure [9,10] assumes that the 
posterior density of the hyperparameters p(α|D) is 
sharply peaked around αMP, the most probable values of 
the hyperparameters. Initially the hyperparameters 
values that optimize the weight posterior probability are 
found, and then all the other calculations involving the 
weight posterior distribution p(w|D) are performed, 
which requires another approximation. Mackay [10] 
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 proposed a spherical Gaussian distribution around a 
particular mode wMP, based on a second-order Taylor 
series expansion of S(w) 
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where A is the Hessian matrix of the total error function. 

The error function S(w) is the negative log 
probability of the weight posterior density, therefore the 
later distribution is Gaussian: 
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where ∆w=w - wMP and Z’S is the normalization constant 
for the approximating Gaussian.  

From ZW(α) and Z’S(α) we can compute the log 
evidence as follows: 
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To optimize this expression for the log evidence 

with respect to α, Mackay [10] proposed a series of 
approximations that gives an implicit equation for α 
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where λi is the eigenvalue of the matrix determinant 
||A||. Components of the sum for which λi >> α make a 
contribution near to 1, while components for which 0 << 
λi << α make a contribution near to 0. We can view the 
above summation, we will call it γ, as a measure of the 
number of well-determined parameters [10]. 

To apply the evidence procedure in classification 
problems, we need to convert equation (14) from 
conditions satisfied by the optimal α into practical 
estimation methods. The following algorithm describes 
each step of applying the evidence procedure: 
1. Chose initial values for the hyperparameters α. 
Initialize the weights in the network. These weights 
need not to be drawn from the prior distribution defined 
by α; 
2. Train the network with suitable optimization 
algorithm to minimize the misfit function S(w); 
3. When the network training has reached a local 
minimum, the Gaussian approximation can be used to 
compute the evidence for the hyperparameters. These 
can be re-estimated with the following formula, derived 
from equation (14) 
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These re-estimation formula can be iterated if desired.  
4. Repeat steps 2 and 3 until convergence.  

 

Selecting relevant input variables from a large set 
of possibilities is a common problem in applications of 
pattern recognition. Automatic relevance determination 
is a method that uses the hyperparameters to define the 
importance of the inputs. Bayesian framework 
associates a separate hyperparameter with each input 
variable. During Bayesian learning it is possible to 
modify the hyperparameters, finding their optimal value 
(evidence procedure). Hyperparameter represents the 
inverse variance of the prior distribution of the weights 
fanning out from inputs. A small hyperparameter value 
indicates that large weights are allowed, and we 
conclude that the corresponding input is important. 
Large hyperparameter signals means that the weights 
are closed to zero, and hence the corresponding input is 
less important [9]. 

Network outputs represent the probability of a 
given output to belong to class C1 . 
 
Materials and Methods 
 

The dataset used here is a public available dataset, 
obtained from  http://www.cs.wisc.edu/~shavlik/mlrg/ 
publications.html, used in works related to the E. coli 
RNA binding sites discovery [11]. It comprises a total 
of 234 sequences with 57 nucleotide window length 
sequence (-50–7), that were used as positive examples. 
The negative examples were generated from the 
promoter-free λ-phage sequence, consisting of a 4977 
base-sequence, which allowed 4921 sliding windows 
comprising 57-bases  without replicates. 

Each nucleotide base was represented by a four bit 
pattern where 1000 encodes adenine (A), 0100 encodes 
thymine (T), 0010 encodes guanine (G), and 0001 
encodes cytosine (C), and the four bits 0000 (X) 
indicates the absence of that base, resulting in an input 
dimension of 228. 

In previous studies of E. coli ribosomal binding 
sites (promoter) prediction using neural networks,  
several feed-forward topologies were tested, varying the 
number of neurons in the hidden layer [11,12]. We have 
implemented ten neural networks, varying from 1 to 10 
neurons in the hidden layer, using a two layer feed-
forward network architecture. The original dataset has 
been divided in two subsets, training and test sets. To 
determine the optimal ratio of promoter:non-promoter 
sequences (p:np ratio), we varied the composition of the 
training set with ratios equals to 1:1, 1:2, 1:5, and 1:10 . 
For the promoters, we used 70% of  the available 
positive examples.  The non-promoter sequences were 
randomly selected from the generated 4921 λ-phage 
sequence. The test set was composed by the remaining 
positive examples and the non-promoter sequences not 
selected previously. 

The most probable weight values of the 40 neural 
nets tested was obtained using the conjugated scaled 
gradient with Polak-Ribiere line search direction with 
error backpropagation [7]. The training was extended 
until the network error, or the gradient difference 
between epochs, on the training set reached 10-15. We 
implemented evidence procedure for determining 
optimal weight and hyperparameter values with two 
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 iterations cycles. All the initial weights and α 
hyperparameters, one for each input, were randomly 
assigned. 

Network outputs, varying between 0 and 1, 
correspond to the probabilities of  given nucleotides 
being a promoter sequence base. Evaluation of the 
trained networks to discriminate promoters and non 
promoters was done using two methods. The first one, 
considered the classical threshold of 0.5, measuring the 
discriminatory efficacy, using the ratio among all 
sequences in the test set of correct-predicted sequences 
in the form 

 

ALL

NPP
CC C

CCP +=  (16)

 
where CP is the number of promoter sequences correctly 
predicted in the test set, CNP is the number of non-
promoter sequences correctly predicted, and CALL is the 
total number of sequences in the test set. 

For the second method, the threshold varied 
between 0.01 and 0.99, with a step size of 0.01. A series 
of probabilities of corrected and false alarm 
classification, respectively PCC and PFA, were used to 
construct Receiver Operating Characteristic (ROC) 
curves (Fig.1). The area below each curve is measures 
the discriminatory efficacy. 
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Figure 1: ROC curve for an ANN architecture with 10 
hidden nodes, and for an input p:np ratio equals to 1:10. 
 

For consensus sequence prediction, we used the 
ANN with only one hidden unit. This approach was 
used because in this case it is possible to provide 
relationships between output and the weights fanning 
out from the input layer. Based on the best network with 
one neuron in the hidden layer, selected using ROC 
approach, we identify the inputs having related 
hyperparameter values greater than 10. Since the 
weights in these cases are not consistent, according to 
Mackay [9] , we code the associated inputs as 0. 

To code the remaining inputs, to recover the four 
bit pattern of the nucleotides, we assigned 1 for inputs 
associated  with largest positive weight values in each  
pattern. For patterns having all weights less than zero, 
we assign 0 to all four bits sequence representing the X 

character. The consensus sequence was determined by 
relating these four bit patterns to the corresponding 
nucleotides coding characters A, T, C,  and G.   

Largest negative values for each four bit pattern 
were used to determine improbable nucleotides in a 
particular base position, generating the most improbable 
sequence for an E. coli promoter.  

All analysis in this work was implemented in 
Matlab software. The routines for neural network 
design, training, and prediction, used the Netlab Pattern 
recognition toolbox. 
 
Results 
 

Varying the number of hidden nodes from 1 to 10 
and training set composition (p:np equals 1:1, 1:2, 1:5, 
and 1:10), we ended with 40 neural nets to evaluate. 
Using the first neural net performance evaluation 
method (0.5 threshold for the output values), we 
obtained that neural nets with more informative training 
set (nets with more negative examples) had better 
predictive corrected classification values PCC, while, 
when the network architecture were augmented by 
inserting hidden neurons, an almost constant PCC was 
observed, indicating no better classification accuracy 
(fig.2). 
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Figure 2: Network performance evaluation with PCC 
measure of accuracy. Promoter:non-promoter ratios 
equals: circle, 1:1; cross, 1:2; square, 1:5; and diamond, 
1:10.  
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Figure 3: Network performance evaluation with ROC 
curve area measure of accuracy. Promoter:non-promoter 
ratios equals: circle, 1:1; cross, 1:2; square, 1:5; and 
diamond, 1:10.  
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Figure 4: E. coli promoter 57-window sequence prediction. Most probable sequence predicted (positive weights), and 
most improbable sequence (negative weights) 
.

The second method of classification was evaluated 
with ROC curves (fig.3). There is an loss of accuracy  
with increasing number of hidden neurons. Similarly as 
the classical method described previously, there is an 
increased accuracy with more informative training sets. 

Using the area below the ROC curve as a criterion 
for selecting the best neural net with a single neuron in 
the hidden layer, we extracted consensus sequences for 
promoters and non-promoters. Rules were extracted 
from the vectors of trained consistent weights. Figure 4 
displays a 57-window sequence. Positive bars are the 
weights associated with nucleotides of the most 
probable promoter or consensus sequence. Negative 
weights are related with improbable promoter 
sequence. 

The consensus sequence contains 19 nucleotide 
bases and the other coded as X are non-relevant for 
promoter discrimination. For the improbable sequence 
we have 35 relevant bases. 
 
Conclusion 
 

In the search by signal approach, functional signals 
are often represented by consensus sequences or 
position weight matrices. As exemplified with E. coli 
promoter prediction, the association of artificial neural 
networks and Bayesian theory has a series of 
advantages when compared with techniques using error 
function minimization. 

First, we could use all the training dataset without 
the necessity of splitting in training and validation 
samples. The Bayesian weight regularization allows 
input/output mapping generalization, preventing 
specialization of the network to the training data. This 
can be of utility for classification models in genomes 
where the knowledge of positive examples is limited. 

Second, since outputs can be interpreted as 
probability, we have the possibility to use ROC to 
evaluate the accuracy of different models and select the 
more robust model to variations in the test dataset. This 
leads to higher specificity and sensitivity, which is of 
prime importance when we have a small numbers of 
known patterns. For samples where the sequenced 
organism is well known, network architectures with 
more hidden neurons can provide more accurate results 
(predictive power greater than 0.99, figs.2 and 3). Also, 
it became evident in the E. coli example used here, that 
increasing the number of negative samples in the 
training set, increases the network accuracy. 

Third, using automatic relevance determination, 
yielded in a single analysis, both the promoter 
consensus sequence and a sequence of improbable 
nucleotides (fig.4). Excluding non-relevant bases 
minimizes the effort for constructing rule based 
classifiers. 

Comparison with other works in the literature was 
not feasible. First, we do not have benchmark datasets, 
which is a current problem in genome informatics. 
Second, given the great diversity in the pre-analysis 
data manipulation, network topologies, and usage of 
other methodologies, such as multiple sequence 
alignment, made almost impossible to reproduce a few 
of them in a single work. Even with this restriction, the 
results were very enthusiastic. We had an accuracy of 
approximately 99% using a very simple network; 
which is easily implemented and avoids the alignment 
and class differentiation steps. 
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