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Abstract: Pulse-echo ultrasound signal formation can
be simulated by numerical emulation of the process
chain: emit signal - electromechanical emit transfor-
mation - wave (e. g. pressure) propagation and scat-
tering - electromechanical receive transformation - re-
ceive signal. The simulation software Field II has been
successfully used for this task. We present an exten-
sion to Field II for the simulation of the signal forma-
tion in tomographic ultrasound imaging. Signals due
to scattered and incident field components are taken
into consideration. An example is given for an ultra-
sound tomography system with eight transducers.

Introduction

Ultrasound tomography can provide information that
is missing in conventional B-mode imaging and so is of
interest for several clinical applications. However there
are still numerous practical problems associated with
most tomographic ultrasound approaches, making further
research necessary. Contrary to classical tomography al-
gorithms straight line propagation of energy can gener-
ally not be assumed with ultrasound pressure waves but
diffraction effects have to be taken into account. A simu-
lation program for the signal formation in ultrasound to-
mographs which allows for diffraction is presented.

Numerous articles have been published regarding the
calculation of transient pressure fields of acoustic trans-
ducers. A review has been given by Harris [1]. The
most common method relies on Green’s function solu-
tions of the homogeneous wave equation under appro-
priate boundary conditions in the time domain [2]. This
method has also has been extended to compute the pres-
sure impinging onto a transducer from a reflecting body
due to acoustic reciprocity [3]. Lhémery pointed out sev-
eral assumptions that are made often only implicitly in
previous papers, thus providing an important insight into
the limitations of the method [4]. However the results de-
rived are generally in good agreement with experimental
findings [3, 5].

Jensen applied the method to calculate the reception
signals in pulse echo ultrasound imaging due to scattering
processes in human tissue under the Born approximation
[5]. Based on this theory, he implemented the software
package Field II, which has become a standard tool in

the simulation of ultrasonic pulse echo imaging. How-
ever, Field II is not capable to handle ultrasound systems
with separately located transducers for transmission and
reception and can therefore not be used to simulate ul-
trasound tomography systems. Recently Bloomfield pub-
lished an extension of the Field II formalism to separately
located transmit and receive apertures [6].

We implemented a simulation program for the sig-
nal formation in ultrasonic diffraction tomography with
an arbitrary number of transmitting and receiving trans-
ducers on the basis of Field II and Bloomfields extension
theory in Matlab®. Our program includes the calculation
of signal components from the incident field which are
missing in Bloomfields paper.

Theory

The geometry of the ultrasound tomography system
with an exemplary transmitting transducerm, an exem-
plary receivern and a point scattererk inside the irradi-
ated object is depicted in Figure 1. A complete tomogra-
phy system consists of a number of transducers which are
generally used both as transmitters and receivers. Usu-
ally, although not necessarily, the transducers are situated
in a circle around the object which is going to be probed
by ultrasound waves.

Wave Equation: Assuming linear conditions, propa-
gation of sound pressure wavesp(r , t) inside the acousti-
cally irradiated object is described by the inhomogeneous
wave equation [7]

∇
(

1
ρ(r)

∇p(r , t)
)

−κ(r)
∂ 2p(r , t)

∂ t2 = 0. (1)

The equilibrium density and compressibility of the
medium at positionr are denoted byρ(r) andκ(r) re-
spectively.

By applying the product rule onto (1):

∇
(

1
ρ(r)

)

∇p(r , t)+
1

ρ(r)
∇2p(r , t)

−κ(r)
∂ 2p(r , t)

∂ t2 = 0 (2)

and using the relation between speed of soundc(r), den-
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Figure 1: Geometry of the ultrasound tomography system
with exemplary transmitterm, exemplary receivern and
point scattererk.

sity ρ(r), and compressibilityκ(r) of the medium

c(r) =
1

√

ρ(r)κ(r)
(3)

the wave equation can be rewritten as

∇2p(r , t)−
1

c2(r)
∂ 2p(r , t)

∂ t2 =
∇(ρ(r))∇p(r , t)

ρ(r)
. (4)

Differentiation rules and introduction of an arbitrary ref-
erence densityρref lead to an alternative formulation of
the inhomogeneous wave equation:

∇2p(r , t)−
1

c2(r)
∂ 2p(r , t)

∂ t2 = ∇
(

ln

(

ρ(r)
ρref

))

∇p(r , t),

(5)
which was used by Chernov [8, p. 37] and Jensen [5].

To solve the inhomogeneous wave equation (1) or (5)
respectively for scattering media with non-trivial func-
tions ρ(r) andκ(r) the pressure fieldp(r , t) is decom-
posed into an incident fieldp0(r , t) which would be
present in a homogeneous i. e. scatterer free medium and
an additional scattered fieldps(r , t) [7]:

p(r , t) = p0(r , t)+ ps(r , t). (6)

For the fictitious homogeneous medium with a density
ρ(r) = ρh ∀ r , compressibilityκ(r) = κh ∀ r and speed of
soundc(r) = ch ∀ r , the wave equation eq. (1) or eq. (5)
respectively reduces to

1
ρh

∇2p(r , t)−κh
∂ 2p(r , t)

∂ t2 = 0 (7)

or to the equivalent equation

∇2p(r , t)−
1

ch
2

∂ 2p(r , t)
∂ t2 = 0. (8)

Incident Pressure Field: The incident pressure
p0m(r , t) from transmitting transducerm is calculated by

utilizing a Green’s function solution to the homogeneous
wave equation for the velocity potentialψ0m(r , t)

∇2ψ0m(r , t)−
1

ch
2

∂ 2ψ0m(r , t)
∂ t2 = 0, (9)

which is related to the pressurep0m(r , t) by

p0m(r , t) = ρh
∂ψ0m(r , t)

∂ t
. (10)

If time and space variables are separable at the surfaceSm

of the transducer the boundary conditions are

∂ψ0m(r , t)
∂nm

∣

∣

∣

∣

r=rm+sm

=

{

Γm(sm)vm(t) ,sm ∈ Sm

0 ,sm /∈ Sm
(11)

in case the transducer is assumed to be placed in an infi-
nite rigid baffle. Herenm denotes the normal vector onto
the transducer surface,rm is the position of the transducer
andsm is a vector pointing fromrm towards any position
on the transducer surface or the baffle. The velocityvm(t)
of the moving transducer surface can be calculated from
the exciting voltageum(t) by means of the convolution

vm(t) =

t
∫

0

hTrm
m (t − τ)um(τ)dτ (12)

with the electromechanical impulse responsehTrm
m (t) of

the transducer. Position dependency of the transducer dis-
placement e. g. due to clamping of its edges is taken
into account by the surface velocity distribution function
Γm(sm). The Green’s function solution to this problem is

ψ0m(r , t) = 2
∫∫

Sm

t
∫

0

Γm(sm)v(τ)g(r , t|rm +sm,τ)dτdsm

(13)
with the Green’s function [5]

g(r , t|r0,τ) =
δ (t − τ −|r − r0|/ch)

4π|r − r0|
. (14)

Substituting the electromechanical relation (12) and the
relation between velocity potential and pressure (10) into
(13) and defining

hSp
m (r , rm, t) =

∫∫

Sm

Γm(sm)g(r , t|rm +sm,τ)dsm (15)

as the spatial impulse response [2, 4, 5], the pressure due
to transmitterm is

p0m(r , rm, t) = 2ρum(t)∗hTrm
m ∗

∂
∂ t

hSp
m (r , rm, t), (16)

where∗ abbreviates the convolution integrals. Since lin-
ear relations are assumed, the incident pressure field
p0(r , t) of all transmittersm = 1. . .M is the sum of the
individual fields:

p0(r , t) =
M

∑
m=1

p0m(r , t). (17)
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 Scattered Pressure Field: To calculate the scattered
sound the scatterers are assumed to be the source of a
pressure fieldps(r , t) which is radiated into a homoge-
neous and otherwise source free medium. This is ex-
pressed by the homogeneous wave equation

∇2ps(r , t)−
1

ch
2

∂ 2ps(r , t)
∂ t2 = T p(r , t) (18)

where the right hand side is the source term with the scat-
tering operatorT (·). The Green’s function solution is [5]

ps(r , t) =
∫∫∫

V

t
∫

0

T (p(r0,τ))g(r , t|r0,τ)dτdr0, (19)

where the Green’s functiong(r , t|r0,τ) has already been
defined in (14) andV denotes the irradiated volume.

It is possible to simplify the calculation for the scat-
tered field under the assumption, that the inhomogeneities
are lumped into a discrete number of point scatterers
at positionsr k, k = 1. . .K. This can mathematically be
expressed by convolving the integrand in (19) with a
weighted sum over three-dimensional Dirac distributions:

ps(r , t) =

∫∫∫

V

t
∫

0

K

∑
k=1

Vk

V
δ (r k − r0)∗ (T (p(r0,τ))g(r , t|r0,τ))dτdr0.

(20)

The expression

δ (r k − r0)∗ (T (p(r0,τ))g(r , t|r0,τ)) =
∫∫∫

V

δ (r k − r0− r1)T (p(r1,τ))g(r , t|r1,τ)dr1

has finite amplitudes atr0 = r k and equals zero else-
where. Thus (20) can be rewritten as

K

∑
k=1

Vk

t
∫

0

T (p(r k,τ))g(r , t|r k,τ)dτ, (21)

where the scattering strength of each point scatterer is de-
termined by its volumeVk.

As (6) states, the pressure fieldp(r , t) is the sum of in-
cident and scattered pressure field. Analysis of (21) how-
ever reveals that the pressurep(r , t) must be known to
calculate the scattered field. To derive an explicit equa-
tion, p(r , t) in (21) is replaced by the incident pressure
p0(r , t), which is the first order Born expansion [5]:

p1(r , t) = p0(r , t)+
K

∑
k=1

Vk

t
∫

0

T (p0(r k,τ))g(r , t|r k,τ)dτ.

(22)
The Born approximation

p(r , t) ≈ p1(r , t) (23)

is valid if the scattering is weak and the scatterers are
small compared to the wavelength of sound [7].

Receive Signal: An ultrasound transducer in receive
mode is sensitive to the total pressure impinging onto its
surface. The spatial dependency of the transducer’s re-
ceive sensitivity is generally equal to the surface velocity
distribution in transmit mode [4] and is thus denoted by
Γn(sn). The total weighted pressurePn(t) onto the surface
Sn is

Pn(t) =
∫∫

Sn

Γn(sn)p(rn +sn, t)dsn (24)

and the output voltage is related to the total pressure by a
convolution

yn(t) =

t
∫

0

hRec
n (t − τ)Pn(τ)dτ (25)

with the electromechanical impulse responsehRec
n (t). By

substitution of the pressure field under the Born approxi-
mation (23) into (24) one gets

Pn(t) ≈
∫∫

Sn

Γn(sn)

(

p0(rn +sn, t)+

K

∑
k=1

Vk

t
∫

0

T (p0(r k,τ))g(rn +sn, t|r k,τ)dτ

)

dsn. (26)

Exchanging the order of integration and summation and
using the symmetry of the Green’s functiong(r , t|r0,τ) =
g(r0, t|r ,τ) which follows directly from its definition
(14), the spatial impulse response as defined for trans-
mission (15) can be employed for the calculation of the
receive signal as well. For receivern and scattererk the
spatial impulse response is thus

hSp
n (r k, rn, t) =

∫∫

Sn

Γn(sn)g(r k, t|rn +sn,τ)dsn

andP0n(t) can be calculated by

Pn(t) ≈ P0n(t)+
K

∑
k=1

VkhSp
n (r k, t)∗T (p0(r k, t)), (27)

with
P0n(t) =

∫∫

Sn

Γn(sn)p0(rn +sn, t)dsn (28)

being the total weighted pressure due to the incident field.
Incorporation of the electromechanical receive impulse
response (25) into (27) finally enables calculation of the
receive voltage signal:

yn(t)≈ hRec
n (t)∗

(

P0n(t)+
K

∑
k=1

VkhSp
n (r k, t)∗T (p0(r k, t))

)

.

(29)
Equations (16), (17), (28), (29) and an adequate scat-

tering operatorT (·) provide a mathematical formulation
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 for the whole signal chain (emit voltage trace - elec-
tromechanical emit transformation - wave propagation
and scattering - electromechanical receive transformation
- receive voltage trance) in ultrasound tomography.

Scattering Operator: To find the scattering operator
T (·) which operates onto the pressurep(r k, t), e. g. onto
the incident pressurep0(r k, t) under the Born approxima-
tion, the inhomogeneous wave equation (1) or (5) respec-
tively is transformed to the form of the wave equation for
the scattered field (18).

Subtraction of the left hand side of the wave equation
for the fictitious homogeneous medium (7) on both sides
of the inhomogeneous wave equation (1) yields

−
1
ρh

∇2p(r , t)+κh
∂ 2p(r , t)

∂ t2 = ∇
(

1
ρ(r)

∇p(r , t)
)

−κ(r)
∂ 2p(r , t)

∂ t2 −
1
ρh

∇2p(r , t)+κh
∂ 2p(r , t)

∂ t2 (30)

Using equivalent transformations and the relation be-
tween density, compressibility and sound speed (3) this
can be rewritten as

∇2p(r , t)−
1

ch
2

∂ 2p(r , t)
∂ t2 =

1
ch

2

(

κ(r)
κh

−1

)

∂ 2p(r , t)
∂ t2

−∇
((

ρh

ρ(r)
−1

)

∇p(r , t)
)

. (31)

That is the formulation which Bloomfield [6] calls Morse
Ingard formulation with reference to [9]. It has also been
derived by Gore and Leeman [10]. Comparison with (18)
shows that the scattering operator operating onto pressure
p(r , t) is

TMI p(r , t) = γκ MI
1

ch
2

∂ 2p(r , t)
∂ t2 +∇

(

γρ MI ∇p(r , t)
)

(32)

with the monopole scattering coefficient

γκ MI =
κ(r)
κh

−1 (33)

and the dipole scattering coefficient

γρ MI = 1−
ρh

ρ(r)
. (34)

An alternative solution for the scattering operator can
be derived by subtracting the term

(

1
ch

2 −
1

c2(r)

)

∂ 2p(r , t)
∂ t2

on both sides of the Chernov wave equation (5). After
some equivalent transformations the wave equation

∇2p(r , t)−
1

ch
2

∂ 2p(r , t)
∂ t2 = ∇

(

ln

(

ρ(r)
ρref

))

∇p(r , t)

−

(

1−
ch

2

c2(r)

)

1
ch

2

∂ 2p(r , t)
∂ t2 (35)

is derived. This is the equation which Bloomfield calls
Chernov formulation with respect to [8]. Chernov himself
however used an approximation to this equation as shown
in (39) and (40). Comparison with (18) shows that the
scattering operator operating ontop(r , t) is

TChp(r , t) = γcCh
1

ch
2

∂ 2p(r , t)
∂ t2 +∇(γρ Ch)∇p(r , t) (36)

with the monopole and dipole scattering coefficients

γcCh =
ch

2

c2(r)
−1, (37)

and

γρ Ch = ln

(

ρ(r)
ρh

)

. (38)

respectively. As reference density the density of the sur-
rounding medium has been used.

If the acoustic parameters of the scatterers and the sur-
rounding medium differ only slightly, the Chernov scat-
tering coefficientsγcCh andγρ Ch can be approximated by

γcax = 2
c(r)− ch

ch
(39)

and

γρ ax =
ρ(r)−ρh

ρh
, (40)

which are the coefficients Chernov [8] originally used.
The scattering operator ontop(r , t) is in this case

Taxp(r , t) = γcax
1

ch
2

∂ 2p(r , t)
∂ t2 +∇(γρ ax)∇p(r , t). (41)

When a scattering operator is substituted into the
equation for the output signal (29), the medium proper-
tiesρ(r), κ(r) andc(r) have to be evaluated at the scat-
terers positionsr k. If the distance between the transducers
and the scatterer|rn − r k| and|r k − rm| is large compared
to the radius of the scatterer and the dimensions of the
transducers, the approximation

TMI p(r , t) ≈ (γκ MI + γρMI cosΘ)
1

ch
2

∂ 2p(r , t)
∂ t2 (42)

holds for the Morse Ingard scattering operator [6]. The
angleΘ = ∠(r k− rm, r k− rn) is measured between trans-
mitter, scatterer and receiver. For the Chernov scattering
operators the approximations

TChp(r , t) ≈
(

γcCh+ γρ Ch(cosΘ −1)
) 1

ch
2

∂ 2p(r , t)
∂ t2

(43)
and

Taxp(r , t)≈
(

γcax+ γρ ax(cosΘ −1)
) 1

ch
2

∂ 2p(r , t)
∂ t2 (44)

respectively are valid under the same conditions [6].
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 Implementation

The ultrasound tomography simulation program
which computes the signal processing chain from the ex-
citing voltage signalu(t) to the receive voltage tracey(t)
as described by (16), (17), (28) and (29) has been imple-
mented in Matlab®. The program allows for any number
of arbitrarily positioned transducers and point scatterers.
Each point scatterer may have individual physical proper-
ties and is represented by one of the scattering operators
TMI (·), TCh(·), Tax(·) using (42), (43) or (44).

For most transducer types and surface velocity dis-
tributions analytic solutions for the spatial impulse re-
sponses are unknown. To compute (16) and (29) our pro-
gram employs Field II, which provides a powerful numer-
ical method to calculate impulse responses for numerous
transducer geometries and surface velocity distributions
[11]. An adaptive Simpson’s algorithm is used to calcu-
late the surface integral in (28).

Results

As an example to our program we simulated an ul-
trasound tomography system consisting of eight circular
piston transducers with a radius of 2 mm which have been
situated equidistantly in a circle of 20 cm diameter around
the irradiated object. The electromechanical impulse re-
sponse for transmission and reception has been a Gaus-
sian modulated sinusoid of 5 MHz and 3.5 cycles. Trans-
ducer 1 was excited with a 5 MHz burst of one cycle. The
receive signalsyn(t) of the receiving transducers due to
the incident field are plotted in Figure 2. Signal distortion
resulting from diffraction effects between the transmitter
and the receivers can clearly be seen. Note especially the
low amplitude of those transducers lying oblique to the
transmitter as opposed to signaly5(t) of the transducer
opposing the transmitter.

The output signalsyn(t) due to the scattered field
of a single point scatterers positioned 2 cm off the to-
mograph’s centre and irradiated by transducer 1 is de-
picted in Figure 3. The point scatterer had an equilibrium
compressibilityκ(r1) = 3.84·10−101/Pa and a equilib-
rium densityρ(r1) = 1085kg/m3. It was modelled by
the Morse Ingard scattering operator. For the surround-
ing medium a compressibilityκ(r1) = 4.06·10−101/Pa
and a density ofρ(r1) = 1000kg/m3 has been assumed.
Diffraction effects in combination with the spatial depen-
dency of the scattering operator result in various signal
shapes, depending on the receiver’s relative position to
scatterer and transmitter.

Discussion

We have shown that the Green’s function approach
can be successfully extended to simulation of the incident
and the scattered field in ultrasound tomography imaging
systems. Our program offers the possibility to study the
effects of diffraction on tomography receive signals and

can therefore be used to develop enhanced image recon-
struction algorithms.

Different scattering operators have been derived from
the inhomogeneous wave equation and employed to com-
pute the scattered field under the Born approximation. Al-
though the Born approximation is widely used in ultra-
sound simulation programs, there is currently no definite
evidence that it approximates the circumstances in bio-
logical tissue well [7]. Thus further research and possibly
an extension of the simulation program to higher order
scattering is necessary.
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Figure 2: Output signalsyn of receiversn = 2. . .8 equidistantly arranged in a circle at angles(n−3)π/4 due to the incident
field of transmitterm = 1.
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Figure 3: Output signalsyn of receiversn = 1. . .8 equidistantly arranged in a circle at angles(n− 3)π/4 due to the
scattered field of a point scatterer irradiated by transmitter m = 1.


