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Abstract: Electrocardiogram signals (ECG) are 
corrupted by many artefacts. Noise suppression is an 
important step for computational ECG analysis. To 
enable the clinical diagnosis, the processed signal 
must preserve the waves characteristics 
(morphology, amplitude and duration). This paper 
presents a hybrid approach to remove baseline drift 
and impulsive noise of the ECG using morphological 
operators and adaptive alpha-trimmed mean filter. 
Baseline line removal is performed by morphological 
operators and impulsive noise suppression is carried 
out by adaptive alpha-trimmed mean filtering.  The 
algorithm developed is compared with other 
approaches which use morphological operators for 
noise suppression of ECG signals. Obtained results 
are satisfactory even when the signal is corrupted by 
a high noise level.  Waves morphology is preserved 
after the filter processing.  
 
Introduction 
 

Electrocardiographic signals (ECG) are corrupted by 
many artefacts, mainly impulsive noise (caused by 
muscle activities and power line interference) and 
baseline drift (due to respiration and motion of the 
subject) [1].  

Noise suppression is generally the first step 
performed in the signal processing of the ECG [2]. 
Artefact removal aims to produce a stable signal not 
only for subsequent automatic processing, but also for 
reliable visual interpretation [1]. Preserving the ECG 
waves characteristics (e.g. morphology, amplitude and 
duration) is important for clinical diagnosis.  

A widely used approach for noise suppression is 
digital filtering [3], which is ineffective for reducing 
impulsive noise [1].   

Alternatives to conventional linear processing are 
nonlinear operators such as median filtering and 
morphological operators [1].  

Morphological operators have been used in the field 
of image processing and are known for their robust 
performance in preserving the characteristics of signal 
while suppressing the noise [4]. In [1, 5] is discussed a 
nonlinear filtering approach for noise suppression using 
morphological operators. However, this approach 
reduces the QRS complex amplitude.  

The alpha-trimmed mean filters are nonlinear 
operators, which are used for the restoration of 
corrupted images and signals [6]. They are a good 

compromise between the median filter and the moving 
average filter, which are known to be the best for 
shorttailed noise types. The most significant feature of 
an alpha-trimmed mean filter is its robustness against 
impulses   generated by an impulsive noise source [6]. 

In this work, we present a hybrid approach, designed 
by OMATF, for removing baseline drift and impulsive 
noise using morphological operators and adaptive alpha-
trimmed mean filtering. 

 
Materials and Methods 
 

Mathematical Morphology, which is based on a set 
of operations, is mostly applied in image processing. 
However, it has been used in background normalization 
and noise suppression of biological signals, such as 
ECG [1, 5].  

Morphological operators provide a nonlinear signal 
processing approach based on minimum and maximum 
operations [7]. There are two basic morphological 
operators: erosion and dilation. Erosion acts as a 
shrinking operator while dilation acts as an expansion 
operator.  

Let f and k two discrete functions defined on 
F={0,1,...,N-1} and K={0,1,...,M-1}, respectively      
f:F→I and k:K→I, where I denotes the integers set.   

The erosion of a function f by the structuring 
element k is denoted by f     k and it is defined as (1) [1]: 

  
(f     k) =   min        f (m+n) - k(n) 
                       n=0,..,M-1   

          for m=0,..., N-M 
 

(1) 

 
The dilation operation of f by k, (f ⊕ k), is defined as 

(2) [1]: 
 

(f ⊕ k) =   max        f (n) + k(m-n) 
                        n=m-M+1,...,m   

          for m=M-1,....N-1 
 

(2) 

 
These operators usually are applied in tandem. 

Opening and closing are two derived operations defined 
in terms of erosion and dilation. Opening of a signal by 
a structuring element is defined as erosion followed by 
dilation. Closing of a data sequence is defined as 
dilation followed by erosion.  Opening operation 
removes peaks from a signal. While, closing operation 
removes pits from a signal.   
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 The length of the structuring element depends of the 
signal characteristics that must be preserved. Since the 
opening and closing operations are intended to remove 
peaks and pits, the structuring element must be designed 
such that ECG waves are not removed by these 
processes. 

Considering that the duration of a wave as T sec., 
and the sampling rate as S Hz, the wave duration 
corresponds to TxS samples. So, in order to maintain 
this wave during the process the length of the 
structuring element must be less than TxS.        

Alpha-Trimmed mean filters are widely used for 
restoration of signals and images corrupted by 
impulsive noise components [6].  

Let {x(i),x(i-1),...,x(i-n+1)},  where n=2N+1 be a 
set of n sample signal values observed in a window, Wi. 
These values are arranged in ascending order (3),   

 

( ) ( ) ( ) ( ) ( ) ( )ix...ixix n21 ≤≤≤  (3) 
  

such as  x(1)(i) is the minimum, x(n)(i) is the maximum, 
and x(N+1)(i) is the median of the above set of signal 
values. The output of the alpha-trimmed mean filter, 
y(i;α) is (4) [6]: 
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Hence, the alpha-trimmed mean filter performs like 

a moving average filter when α value is close to 0, and 
like a median filter when α is close to 0.5.  

The main design problem of the alpha-trimmed 
mean filter is to select the better value of α for a given 
noise type. However, this selection may not be possible 
when the noise is not known or varies with time [6]. For 
these cases, has to be developed an adaptive filter that 
changes the α value according to some characteristics of 
the signal.  

The proposed approach uses two steps to process the 
ECG signal: 1-) removal baseline drift and 2-) impulsive 
noise suppression. Figure 1 illustrates a block diagram 
of this approach. 

The structuring element used, which is symmetric 
and parameterized, was created as describes in (5), (6) 
[1].  Considering a structuring element k of length 2N, 
for n=0,1,...,N: 

 

( ) ( )ne1hnk α−−×=  (5) 
    

and for n= N+1,...,2N: 
 

( ) ( )nN2knk −=  (6) 
 
Impulsive noise suppression is performed by 

adaptive alpha-trimmed mean filters. The α values are 
defined based on signal information. The adaptive 
process used is described as follow (7):  

 
( )
( )⎩

⎨
⎧ ≥≤α

=
      otherwise:     0 m

 τ H(i)or  τ H(i) if:   m
y(i) 211  (7) 

where m is the alpha-trimmed mean filter, H(i) is 
information about sample i, which is defined in the 
equation (8), α1 and α2 are the alpha value applied, and 
τ1 and τ2 are thresholds fixed according to the 
characteristics of the signal.  

 
 
Figure 1: Block diagram of the algorithm.  In the first 
step, after the opening and closing operations, the 
baseline is obtained. The baseline drift is subtracted 
from the input. After, the alpha-trimmed mean filtering 
is applied for impulsive noise suppression. 

 
When the onset of a QRS peak is detected, the α 

value used is α1 (7), such as the alpha-trimmed filter 
considers few samples near of the sample i. Otherwise, 
the alpha-trimmed filter performs like a moving-average 
filter.  

QRS peaks detection was adapted from an algorithm 
described in [8].  The first derivative is calculated for 
each signal point using the formula (8): 

 
)1i(X)1i(X)i(H −−+=  (8) 

 
The thresholds τ1 and τ2 (7) are defined, respectively 

as a fraction of the minimum and maximum values of 
the derivative array.  

To analyze the algorithm performance for noise 
suppression were realized experiments divided in two 
classes. A first series of experiments were performed 
using a simulated ECG signal added to impulsive noise 
and baseline drift. The simulated signal (noise-free) is 
modelled as described in [9].  This model has a software 
version implemented in MATLAB, named ECGSYN, 
which is freely available in [10]. Impulsive noise and 
baseline drift were modelled using the equations (9), 
(10), as described in [1].  

The impulsive noise is described as a mixture of 
Gaussian noise that has the following probability 
distribution function (9):  
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 where φ(y) is the probability distribution function of a 
Gaussian random variable with zero mean and unit 
variance.  

The baseline drift was modelled as (10) [1]: 
 

( ) ⎟
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N
n.2cosAnmBnb  (10) 

 
where B is a bias value, N controls the severity of the 
baseline roll and m controls the degree of upward or 
downward drift. 

These artefacts were added to the simulated signal as 
follows (11): 

 
( ) ( ) ( ) ( )nbninsnr ++=  (11) 

 
where r(n) is the noisy signal, s(n) is the noise-free 
simulated  ECG, i(n) is the impulsive noise component, 
and b(n) is the baseline drift [1].  

Two metrics were applied to measure the algorithm 
performance: d2 (root-mean-squared difference between 
two signals [1]) and SNR (signal-to-noise ratio, denoted   
in dB [10]).  Assuming s the simulated ECG signal and 
n the output of the process of filtering the noisy signal, 
d2 was defined as (12) [1]: 
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where L is the sample number of the signals. 

The SNR is defined as (13) [11]: 
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where S was the noise-free ECG, N was the processed 
signal, and Xσ was defined as (14): 

 

( )( )
2L

0l
xlXX ∑

=
σ µ−=  (14) 

 
where µx was the mean of the signal X. 

Others experiments using the developed algorithm 
were performed using acquired ECG and ECG data 
from the MIT-BIH arrhythmia database. Real ECG had 
240Hz sampling rate, while data archives from MIT-
BIH database had, generally, sampling rate of 360Hz.  
 
Results 

 
Figure 2 presents the performance of two algorithms 

for processing a simulated ECG signal added to noise:   
IMABNECG [3], which uses only morphological 
operators, and OMATF.   Artefacts (impulsive noise and 
baseline drift) were generated as described, equations 
(8) and (9), using for the baseline drift m=0.8, A=500 
and N=1000; and for the impulsive noise using ε=0.2, 
σ1=65 and σ2=650. 
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Figure 2: (a) Noise-free simulated ECG; (b) noise 
generated adding baseline drift and impulsive noise; (c) 
Noise-free ECG added to noise; (d) noise suppression 
performed by IMABNECG; (e) noise suppression 
performed by OMATF. 
  

A single heart beat is detailed in Figure 3. The 
simulated noise-free ECG, the simulated ECG signal 
added to noise and the OMATF output are overlapped. 
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Figure 3: Detailed heat beat from simulated ECG 
overlapped with the signal added to generated noise and 
the OMATF output. 

 
The comparison in Table 1 considers the algorithm 

INSBNECG described in [1], IMABNECG 
implemented in [3] as an improved version of 
INSBNECG and OMATF. The parameters: ε, σ1 and σ2 

define the level of impulsive noise [1]. As σ1 and σ2 
increases, the noise amplitude increases. The frequency 
of impulsive noise occurrence increases as ε increases.  
 
Table 1: Performance comparison of the algorithms 
noise suppression at different impulsive noise levels (I: 
ε=0.1 σ1=2 σ2=20; II: ε=0.2 σ1=65 σ2=650; III: ε=0.3 
σ1=70 σ2=700). 
 

 I II III 
Approach d2 SNR d2 SNR d2 SNR 

INSBNECG 0.086 6.7 0.085 6.58 0.086 6.38 

IMABNECG 0.062 12.2 0.073 9.83 0.075 8.88 

OMATF 0.051 15.7 0.053 14.2 0.061 11.4 
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 Figure 4 shows the noise level significance 
determined by the parameters used in Table 1. 
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Figure 4: Different noise levels described in Table 1.  

 
Experiments with acquired ECG and data from the 

MIT-BIH database presented satisfactory results.  
Figure 5 shows an overview of the OMATF processing 
applied in a real ECG. Removed impulsive noise, 
baseline drift and filtered signal are shown.  
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Figure 5: Noise suppression in an acquired ECG.  (a) 
Acquired ECG signal; (b) Baseline drift; (c) Removed 
impulsive noise; (d) Filtered signal by OMATF. 

 
Figure 6 shows a zoom of Figure 5.   
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Figure 6: Zoom of Figure 5. 

 

A single beat detailed analysis from Figure 5 is 
provided in Figure 7. For overlapping the processed and 
acquired ECG, the baseline was subtracted from the 
original signal.  Figure 7 shows the efficiency of 
OMATF in preserving waves morphology and 
maintaining the peaks amplitudes. 
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Figure 7: Detailed heart beat extracted from Figure 5. 
The acquired ECG is denoted by a blue line, and the 
ECG after filtering by OMATF by a red line.   
 
Discussion 

 
Others nonlinear operators were tested, such as 

median filtering. Although, the results were 
unsatisfactory, the attenuation was higher than observed 
in IMABNECG [3] and OMATF results. 

When morphological operators are applied to 
impulsive noise suppression, there is a reduction in the 
QRS amplitude. The attenuation is due to structuring 
element length, which is created to remove the 
impulsive noise. The structuring element acts over the 
QRS complex as if it was impulsive noise. Thus,   the 
peaks of the QRS complexes are attenuated in the same 
way that the impulse noise. 

In OMATF algorithm, the length of the structuring 
element, the length of the window (used in alpha-
trimmed mean filter) and the α1 value are dependent on 
sampling rate of the signal. So, these parameters are set 
according the signal sampling rate. 

The QRS detection algorithm used in OMATF is 
simple and not very robust. However, considering the 
baseline drift removal carried out in the algorithm first 
step, the QRS peaks generally will correspond to the 
maximum and minimum values. Furthermore, the 
intencion is to detect points that are parte of the QRS 
complex, instead  the peaks.    

Instead the other nonlinear operator mentioned 
above, the adaptive alpha-trimmed mean filter removed 
the impulsive noise without attenuation. Since, its 
adaptive process applies another α value when the 
higher frequencies of the QRS complex, which must be 
preserved, are detected.  
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 Conclusions 
 
A hybrid approach was presented (denoted by 

OMATF) to ECG noise suppression was presented 
using morphological operators and adaptive alpha-
trimmed mean filtering. 

The OMATF approach performance was firstly 
demonstrated (Figures 2 and 3) using a simulated ECG 
signal added to noise and comparing the simulated 
noise-free ECG with OMATF results (Table 1). In this 
case, the algorithm presented satisfactory results, even 
with high noise level. 

Furthermore, the noise suppression was performed 
in a real acquired ECG signal (Figures 5, 6 and 7). 
Baseline removal and impulsive noise suppression were 
satisfactory and efficient, when it is considered the large 
amount of artefacts presented in the acquired ECG 
signal. 

Our approach shows to be robust to different levels 
of noise and artefacts.  The signal morphology is 
preserved and there is no attenuation of the QRS 
amplitude.  
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