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Abstract: Image representation plays a significant
role in image reconstruction from projections using
iterative methods. In this work two iterative image
reconstruction methods, in which the solution was
represented using a linear combination of polynomial
windows, were evaluated. The methods were alge-
braic reconstruction technique (ART) and row-action
maximum likelihood algorithm (RAMLA). Novel ba-
sis functions were compared to recently used blobs in-
troduced by Lewitt. The evaluation based on simu-
lated data showed that polynomial windows and Le-
witt’s blobs achieved comparable results. This hap-
pened for both ART and RAMLA.

Introduction

Iterative image reconstruction has been shown to be
preferable approach in many cases such as computed
tomography, nuclear medicine, microscopy and nonde-
structive evaluation over analytical approach. Despite be-
ing computationally demanding as compared to analyti-
cal methods iterative algorithms offer several advantages
and can be applied even in complex image reconstruction
tasks including volumetric imaging [1]. Crucial facet of
iterative reconstruction methods determining their perfor-
mance is possibly accurate forward/backward projection
operator. This strictly depends on the way the discrete
image is represented in the computer.

Intuitive approach of representing such images by a fi-
nite number of parameters is through dividing the image
into pixels. Pixel has a unit value inside a small square
and has zero value outside. This simple representation,
however, due to its inherent lack of smoothness leads to
inaccurate calculation of projections of the represented
image and is not satisfactory for image reconstruction
from projections.

Alternatives to pixels for image representation in iter-
ative reconstruction algorithms have been proposed [2],
[3], [4], [5]. Instead image is represented using ba-
sis functions which decay to zero within increasing dis-
tance. In this case the images are constructed as the sum
of scaled and shifted copies of an image element which
overlap. Thus the image value is well defined for every
point in the image despite the fact that it is represented
only by a finite set of numbers.

Several kernels have been proposed in the literature
as basis functions. Andersen and Kak suggested bilin-

ear elements [6] whereas Hanson and Wecksung [3] pre-
sented study using B-splines. The Gaussian function has
been also considered in iterative image reconstruction by
the latter authors [3] as well as by Snyder et al [7] and
Schweiger and Arridge [5].

Presently, the most common basis functions utilized
in iterative reconstruction methods are based on the gen-
eralized Bessel-Kaiser window used in signal processing.
This family of image elements, called blobs, have been
introduced into the field of image reconstruction by Le-
witt [8], [9]. Their main advantage is that they are band-
limited with a possibility of easy tuning and that there is a
convenient formula for computing the projection of those
basis functions.

As an option a family of polynomial windows was
evaluated in this work. The initial results of utilizing
polynomial windows as basis functions for iterative im-
age reconstruction were presented in [10]. The coef-
ficient values of polynomial windows were optimized
in such a way as to follow the requirements suggested
for blobs. Those are accuracy of the reconstruction and
ability to form an accurate approximation to a constant-
valued function of the spatial variables.

Materials and methods

The image representation̂f (x,y) utilized here is con-
structed as the superposition of scaled and shifted copies
of the basis functionΦ

f̂ (x,y) =
J

∑
j=1

c jΦ(x− x j,y− y j) (1)

where{(c j)}
J
j=1 is a set of coefficients of the image rep-

resentation and{(x j,y j)}
J
j=1 is a set ofJ points in 2D

space that are the nodes of a uniform grid over a region
of the space.

The blob formula proposed by Lewitt has the follow-
ing form [9]

blm,T,α(r) =
1

Im(α)
(
√

1− (r/T)2)mIm(α
√

1− (r/T)2)

(2)
for 0 ≤ r ≤ T and value zero forr > T , wherer is the
radial distance from the blob center.Im denotes the modi-
fied Bessel function of orderm, T is the radius of the blob
andα is a parameter controlling the blob shape.
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 A general formula for computing the polynomial
counterpart of that basis function can be defined as fol-
lows

bpT,D(r) = 1+
D

∑
k=1

a2k

( r
T

)2k
(3)

whereT is the extent of the basis function and D is a half
of the polynomial extension degree.

From the equation (1) the line integral ˆpi of f̂ along
the line integrali has the form

p̂i =
J

∑
j=1

ai jc j (4)

where ai j is the line integral, along the linei, of the
shifted basis function with the center in(x j,y j). Since
the considered basis functions are spherically symmetric
ai j is independent on the angular orientation of the line of
integration and depends only on the distancer of the line
from the center of the basis function.

Projection of the Lewitt kernel (Abel transform) is
proportional to bm+1/2,T,α(r) and can be analytically
computed in a convenient way [8]

plm,T,α(r) = (5)

=
a

Im(α)

√

2π
α

(

√

1−
( r

T

)2
)m+1/2

·Im+1/2

(

α
√

1−
( r

T

)2
)

A general formula for the Abel transform of the poly-
nomial window is presently being introduced by Jaskuła
[11]

ppT,D(r) = (6)

=
√

T 2− r2
D

∑
j=0

r2 j
D

∑
k= j

2
a2k
(

−T 2 + r2
)k− j

k! (−1)k+ j

T 2k (2k−2 j +1) (k− j)! j!

As observed by Matej and Lewitt [12] basis functions
can accurately represent the constant function when the
Fourier transform of the basis function is zero at all multi-
ples of the “sampling” frequency of the image-space grid.
Forα = 10.8 the Lewitt kernel have the first zero crossing
of the kernel spectrum at the sampling frequency. Opti-
mized coefficients of the polynomial window which fol-
low the same properties as the blobs were found and are
presented in table 1. Spatial and frequency characteristics
of the windows described above are shown in figure 1. In
figure 2 the projections of those windows are plotted.

The forward/backward projections were implemented
in the form of a footprint based ray driven splatting
[13]. The footprint table [3],[12] had dimension 200
for the basis function radius 2.0 relative to the grid in-
crement. The iterative image reconstruction algorithms
used in this study were algebraic reconstruction tech-
nique (ART) [14] and row-action maximum likelihood
algorithm (RAMLA) [15]. The number of iterations was
set 5 for both methods. The relaxation coefficient for
ART was experimentally chosen 0.07 whereas the val-
ues of the coefficient for RAMLA was subsequently 0.71,
0.31, 0.14, 0.09 and 0.06 in each iteration.

Table 1: Optimised coefficients of the polynomial win-
dow which follow the properties of the blobs with pre-
sentedα.

Coeff. α = 10.8

a0 1.0000
a2 -6.3710
a4 18.4145
a6 -32.1102
a8 37.7124

a10 -31.0969
a12 17.7065
a14 -6.3124
a16 1.0571
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Figure 1: Radial profile (up) and frequency characteris-
tics (down) of the Lewitt kernel (α = 10.8, radius equal
to 2) and its polynomial counterpart.

For the purpose of evaluation projections of the
Shepp-Logan head phantom [16] and the custom phan-
tom with high contrast spots of a different shape and ra-
dius were generated using software simulator [17]. For
the first phantom he simulated data consisted of projec-
tions taken at 90 equally spaced angles within 180 de-
grees arc. For the second phantom the number of angular
orientations was 45. In the first case the projection size
was equal to 129 whereas in the second case the size was
65. In both cases the image size was equal the projection
size.
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 Results

The reconstructed images of the phantoms using
RAMLA with polynomial window are depicted in Fig-
ure 2. The rest of images represent the difference between
the reconstruction and the original phantom. So that, the
distribution of the errors within each image can be visible
more clearly.

In Figure 3 difference images are shown between
the original phantom and its reconstruction using ART.
Left images present utilization of Lewitt window whereas
right images show employing the polynomial window.
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Figure 2: Reconstructions of two phantoms using
RAMLA with the polynomial basis function.

In figure 4 the difference images are presented. The
upper image visualize the spatial distribution of the er-
ror between the digitized phantom and the reconstruction.
Observing the difference image between the reconstruc-
tion utilizing the Lewitt kernel and that with the poly-
nomial window (figure 4 down) it can be concluded that
the methods produce ripples of different nature (due to
diverse in shape shape and frequency characteristics of
each blob - figure 1) and there is a difference in a way
they handle streaking artifacts. More thorough study is
needed considering that matter which will be performed
in the future.

Conclusions

The effect of different basis expansions of the recon-
structed images for two iterative image reconstruction
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Figure 3: Difference images between the original phan-
tom and its reconstruction using ART. Left images
present utilization of Lewitt window whereas right im-
ages show employing the polynomial window.
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Figure 4: Difference images between the original phan-
tom and its reconstruction using RAMLA. Left images
present utilization of Lewitt window whereas right im-
ages show employing the polynomial window.

methods was investigated. The evaluation based on simu-
lated data showed that polynomial windows and Lewitt’s
blobs achieved comparable results. This happened for
both ART and RAMLA.

Regarding future investigations it seems that itera-
tive image reconstruction methods with the basis func-
tions based on the polynomial window could be investi-
gated using methodology presented by Donaire and Gar-
cia [18].

Further on, there is a need for investigation of the ap-
propriate image reconstruction quality criteria. Some of
the possibly useful measures where describe in [19]. It
has to be investigated to which degree optimization of
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 the basis functions has positive impact of the image qual-
ity. This will justify choosing more sophisticated basis
function instead of pixels.
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