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Abstract: The polynomial window which has a very
simple formula and very low cost of computation can
be widely used in DSP algorithms, particularly during
medical image reconstructions. The results are very
promising: the polynomial window is faster than com-
petitors and its parameters are similar in time and fre-
quency domain. The Abel transform in general form
of polynomial window is also presented. The polyno-
mial window and its projection could be utilized in it-
erative image reconstruction.

Introduction

In 1990 R. M. Lewitt introduced a family of windows and
their corresponding Abel transforms based on standard,
well-known Kaiser-Bessel window. The Lewitt window
has the same drawback that the Kaiser window has: high
cost of computation because the Bessel function is used
during its calculation. In this paper the polynomial win-
dow ([1]) which has a very simple formula and very low
cost of computation is presented. By changing the coef-
ficients of polynomial window we can obtain time win-
dows with different properties in the frequency domain.
The Abel transform in general form of polynomial win-
dow is also presented. The polynomial window and its
projection could be utilized in iterative image reconstruc-
tion.

Materials and Methods

The problem which should be solved is to find the sym-
bolic Abel transform of a given polynomial window. The
polynomial window in its general form [1] is described
by the following equation (1):

p(t) = 1+
N

∑
k=1

ak

( t
T

)k
(1)

The formula of the polynomial window can be broken
down into two sums that contain the odd and the even
coefficients respectively.
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let
r =

√

s2 + t2 (3)

and

AbT(s) = 2

z∫

0

p(r)dt (4)

wherez=
√

T2−s2

Analyzing the formula (2) we can observe that this
equation can be divided into three elements (5):
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interchanging the integration and summation operators
we obtain:
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︸ ︷︷ ︸
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(6)

From the form of the equation (6) we can draw a sim-
ple conclusion that in order to compute the complete Abel
transform, it is sufficient to determine a method of calcu-
lating the odd and the even order polynomials.

1 Abel transform of even elements

Let us consider then even-order polynomials first:
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 It is necessary to notice thata2k andT in denominator
do not depend on the integration variablet. Therefore, to
simplify, we remove them from equation (7). Our main
goal to find general form of the Abel transform of even

elements is reduced to find a solution to the integral (8):

AbT(s,k) = 2

z∫

0

(√

s2 + t2
)2k

dt (8)

AbT(s,1) = 2 z for k = 1 (9)
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We can observe a relationship. Equations from
(9)..(13) contain three parts. First part 2 zs2k has a con-
stant element (underlined) and a variable degree of power
of s dependent onk. The second part, which is at the
end of the expression shown (9)..(13) has a constant form
with degree of power and value of coefficient dependent
on k: z2k+1 2

2k+1. The third, central part, has form of
series where degree of power ofz ands and coefficient

in zx ·sy are variable. These coefficients have such a
form that their denominator is formed by the sequence
3,5,7, ...2l − 1 and their numerator contains coefficient

fellows from equation 2
k−l
∏
l=0

k−l
l+1. To summarize, the Abel

transform of the even order can be described by for-
mula (14)
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2 Abel transform of odd elements

Let us consider then odd part of (6)
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Both a2k−1 andT are not dependent on integration vari-

ablet. Similarly like in even case we remove them from
our equation. Our main goal to find general form of Abel
transform of odd elements resolve itself to find solution
for integral (16):
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We can solve above integral fork = 1..5
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whereL = s2 +z2

Based on (17) we can conclude that:

(1) it is possible to distinguish three parts:
• −d sxln

(
s2
)

expression contains: minus sign,

coefficient d which depend onN, sx (degree
of power depend onN) and constant element:
ln
(
s2
)

• +csx ln
(
z+

√
L
)

the element at the end of for-
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 mula has ordered form: sign+, coefficientc (de-
pendent onN), sx wherex depend onN and con-
stant element ln

(
z+

√
L
)

We can notice that:
· d = 1/2c
· sx occure in both parts, andx = 2k
· we have to find method how to solve coef-

ficientc
• there is third part in equation (17), where num-

ber of elements are depend onk and has form of

series:z∑c·s?L? where c is a coefficient varying
depend onk

(2) based on above conclusions it is necessary to find rule
describe coefficientc and formulaz∑n·s?L?

First of all we consider above formula. Coefficient
n occur with highest degree of power ofs2k for eachk.
We can notice that formula 1/k can be found fors= 0; it
is worth checking if following coefficients they are mul-
tiplicity of 1/k. To check this property we divide next
coefficient by 1/k. Lets analyze situation fork = 7.

numer.nl+1
nl

denom.nl+1
nl

numer. ratio denom. ratio proper ratio value proper numer./denom. value
13/1 84/7 13 12 13 12 13/1 84/7
143/13 840/84 11 10 11 10 143/13 840/84
429/143 2240/840 3 8/3 9 7 1287/143 6720/840
143/429 640/2240 1/3 2/7 7 6 9009/1287 40320/6720
143/143 512/640 1 4/5 5 4 45045/9009 161280/40320
429/143 1024/512 3 2 3 2 135135/45045 322560/161280

The first two column consist reduce values of numer-
ator and denominator. Last two column are composed
with not reduce values of coefficients. Analyzing these
values we can assume proper rule which can be describe
with:

nk,m =
k−m−2

∏
l=0

(2k−1)/2− l
k−1− l

(18)

where variablem cause generating values of following
coefficient for particular degree of power ofL and s.
Thus, we can write:

AbOdd1 =
z
k

k−1

∑
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(

nk,m·L
1
2+ms2(k−1−m)

)

(19)

The last task is to find rule for calculate coefficientc.
We know that coefficient of highest degree of power of
s in formula (19) is equalc (this is also the same situa-
tion whenm= 0 in (18)). To check this preposition we
calculate values ofc for k = 1..7

k coefficient
1 1
2 3/4
3 5/8
4 35/64
5 63/128
6 231/512
7 429/1024

We can notice that numerator and denominator have
some regularity:

1 ·3 ·5 ·7 ·9·11· · ·
1 ·4 ·6 ·8 ·10· · ·

(20)

what can be generalize to

nk,0 =
1
k
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∏
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(21)

After adding all elements of formula we achieve:
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Therefore for formula (16) we can write general rule:
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The Abel transform of odd elements can be describe with formula:

AbOdd(s,k) = 2
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dt (24)
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wherenk,m has form (18)
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 3 The Maple procedure of Abel transform

Below there is a MAPLE V procedure which solve Abel
transform of A-degree polynomial window elements.

Abel:=proc(A)
global k,L;
local W,z;
if type(A,odd) then k:=(A+1)/2 else k:=A/2 end if;
z:=sqrt(Tˆ2-sˆ2);L:=(sˆ2+zˆ2);
if type(A,odd) then

W:=a[2 * k-1]/(k * Tˆ(2 * k-1)) * ...
(z * sum(product((((2 * k-1)/2-l)/(k-1-l)),l=0..k-2-m) * ...
Lˆ((1/2+m)) * sˆ(2 * (k-1-m)),m=0..k-1)+
+(product(((2 * k-1)/2-l)/(k-1-l), l = 0 .. k-2)) * ...
sˆ(2 * k) * simplify(ln(z+Lˆ(1/2))+ln(1/(sˆ2)ˆ(1/2))))

end;
if type(A,even) then

if A=0 then W:=2 * z else
W:=a[2 * k]/Tˆ(2 * k) * (2 * z* sˆ(2 * k)+2/(2 * k+1) * zˆ(2 * k+1)+
+sum((2 * product((k-l)/(l+1),l=0..k-l))/(2 * l-1) * ...
zˆ(2 * l-1) * sˆ(2 * (k-l)+2),l=2..k))

end;
end;
simplify(W) assuming T::positive;
end proc:

Lets find Abel transform of 3rd degree polynomial
window: we need zero, second and third order of poly-
nomial. UsingProj:=Abel(0)+Abel(2)+Abel(3);

gives:

Pro j = 2z+
2
3

a2z
(
2s2 +T2

)

T2 +

+ 1/8
a3
(
6z Ts2 +4z T3

)

T3 +

+ 1/8
a3
(
6s4 ln(z+T)−3s4 ln

(
s2
))

T3 (26)

wherez=
√

T2−s2

To make sure that procedure Abel is correct lets com-
pute transform Abel directly.

w := (t,A) 7→ 2
aA

TA

√
T2−s2
∫

0

√

s2 + t2
A

(27)

OProj:=proc(m)
global k;local W,w;
w:=(t,A)->(sqrt((sˆ2+tˆ2))ˆ(A))/TˆA * a[A]:
if type(m,odd) then k:=(m+1)/2 else k:=m/2 end if;
if type(m,odd)
then W:=2 * int(w(t,2 * k-1),t=0..sqrt(Tˆ2-sˆ2))
end;

if type(m,even) then
if m=0 then W:=2 * int(1,t=0..sqrt(Tˆ2-sˆ2))

else W:=2 * int(w(t,2 * k),t=0..sqrt(Tˆ2-sˆ2))
end;

end;
simplify(W) assuming T::positive;
end proc:

After: OrgProj:=OProj(0)+OProj(2)+ OProj(3) ;
we achieve

OrgPro j = 2z+
2
3

a2z
(
2s2 +T2

)

T2 +

+
2
8

a3
(
3z Ts2 +2z T3

)

T3 +

+
3
8

a3
(
2s4 ln(z+T)− s4 ln

(
s2
))

T3 (28)

wherez=
√

T2−s2

Lets simplify both expression:
simplify(Proj-OrgProj);
result is equal zero.
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Figure 1: The polynomial window optimized with en-
ergetic criterion (upper) and error betweenProj and
OrgProj .

Conclusions

The polynomial window which has a very simple for-
mula and very low cost of computation can be widely
used in DSP algorithms, particularly during medical im-
age reconstructions. The results are very promising: the
polynomial window is faster than competitors and its pa-
rameters are similar in time and frequency domain. The
Abel transform in general form of polynomial window is
also presented. The polynomial window and its projec-
tion could be utilized in iterative image reconstruction.

References

[1] M. JASKULA. Fast time window in dsp. PhD the-
sis, Szczecin University of Technology, Szczecin,
Poland, June 1999.


