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Abstract: DSP (digital signal processor)-based 
ultrasound system has the advantage of easy 
reconfiguration and use of previous design. These 
offer reduced development cost and time. However 
since the ultrasound imaging system requires high 
data rate and huge amount of computations 
compared to the commercial DSP, the 
implementation of ultrasound imaging system based 
on a DSP is challenging. In this paper, we 
implemented the echo processor among many 
functional blocks in ultrasound imaging system, and 
proposed the new algorithm optimized to the DSP 
architecture in order to enhance the system 
performance. 

 
Introduction 

 
Conventional ultrasound imaging system is divided 

into front-end and back-end segments. The front-end 
segment is composed of an analog transmitter, an 
analog receiver and a beamformer. The back-end 
segment is composed of an echo processor and a DSC 
(digital scan converter). Especially, the back-end 
segment is suitable for implementation with a DSP 
because it contains many one dimensional signal 
processing blocks. The new algorithm can be easily 
applied to these blocks. 

However, since the data rate and computational 
power of back-end segment is higher than those of the 
commercial DSP. We must design an efficient DSP 
system using many DSPs for realtime processing of 
signal processing tasks in back-end segment. This 
would result in a large increase in the development time 
and the overall system cost. In this paper, we proposed 
new algorithms to optimally implement the echo 
processor using minimum number of DSPs. 

In the next section, each functional block of the echo 
processor is programmed with TMS320C64x to 
evaluate its processing time. The echo processor shown 
in figure 1 can be divided into two sections: the 
functional blocks of the first half of the echo processor 
contains DC cancel FIR filter, TGC (time gain 
correction), quadrature demodulator and decimation 
filter and the second half  of the echo processor contains 
magnitude calculator, log compressor, zone blending, 
edge enhancement FIR filter, nonlinear filter and lateral 
FIR filter. 

First, we will propose efficient methods to reduce 
the computation time of most time-consuming blocks of 
eaccho processor sections. Secondly, the performance of 

the software echo processor using the proposed methods 
will be compared with the that of the conventional echo 
processor. Finally, the poposed method is verified by 
comparing tha images produced by both methods.. 
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Figure 1: Conventional echo processor 
 

DSP implementation of echo processor  
 
Each functional block in the echo processor was 

programmed in assembly or C language and various 
algorithms were searched to program each functional 
block efficiently. Especially, decimation filter required 
the largest processing time and hence was efficiently 
programmed using linear assembler for C64x.  DC 
cancel filter was also programmed in assembly 
language.Other assembly coding?  All other functional 
blocks were programmed in C language. The results are 
summarized in table 1, which shows the number of 
cycles required for each functional block to process one 
scan line data consisting of 7134 rf samples . The input 
rate of the rf samples to the echo processor block is 
40MHz throughout this paper. 
 
Table 1: Processing time of each functional block in the 
first half of the echo processor 

 
Function Cycles/scanline 
DC cancel filter 121,349 
TGC 66,598 
Quadrature demodulator 12,296 
Decimation filter 334,328 
Total cycles 536,571 
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 Table 2 shows the number of cycles required for 
each functional blocks of 2nd half of echo processor to 
process 1024 inphase and quadrature data pairs per 
scanline from the decimation block. The magnitude 
calculator and log compression blocks contain the 
transcendental functions such as squared root and log 
functions, respectively. Such functions take too much 
time to calculate directly using MAC (Multiply and 
Accumulation) operations. Instead, we investigated 
other methods for programming square root function, 
including Newton Raphson algorithm. Among them, 
CORDIC rotator algorithm, requiring only simple bit 
shift and addition/subtraction, was used to calculate the 
magnitude and the result is shown in table 2. The log 
compression block was implemented using LUT (look-
up table) reference method instead of typical Taylor 
series expansion method.  

From the data given in tables 1 and 2, total number 
of cycles to process all the functional blocks of the echo 
processor was estimated to be 591,499. Since internal 
clock period of TMS320C64x DSP is 1ns, the echo 
processor can be programmed to support PRF up to 
3.4KHz using two DSPs.  

 
Table 2: Processing time of each functional block of the 
second of the conventional echo processor 

 
Function Cycles/scanline 
Magnitude calculator 17,934 
Log compressor 8,441 
Zone blending 571 
Edge enhancement filter 11,310 
Nonlinear filter 13,316 
Lateral filter 3,356 
Total cycles 54,928 

 
Table 1 shows that decimation block takes up more 

than 60% of the total processing time of the 1st half of 
the echo processor. In the 2nd half, magnitude 
calculator and log compressor blocks require about 50% 
of the computation time. To reduce the pocessing time, 
we devised efficient algorithms for those blocks, which 
can be programmed to run much faster on the target 
DSP. 

Figure 2 show the conventional decimation filter 
architecture, in which upsampling is performed prior to 
decimation filter to obtain finer decimation ratio. 
Conventionally, the length of the decimation filter in 
figure 2 increases in proportion of  M. That is, it is 
given by K×M. This implies that when K=16, 368 filter 
taps are required for M=23. Therefore, direct 
implementation of the decimation filter requires such a 
large instruction cycles as shown in table 1.  

 

 
 
Figure 2: Conventional decimation filter 

 

If the decimation filter is implemented with the 
polyphase structure, its length can be reduced to K 
regardless of M. However, polyphase implementation of 
the decimation block increases the overhead such as in 
data manipulation and program flow control.  Such 
overheads tend to reduce the efficiency of software 
pipelining and parallel execution of multiple 
instructions, thereby increasing the overall processing 
time.   

 
Table 3: Illustration of input output relations for various 
values of M 
 

M y(1) y(2) y(3) y(4) y(5) 
5 x(1) x(2.25) x(3.5) x(4.75) x(6) 
6 x(1) x(2.5) x(4) x(5.5) x(7) 
7 x(1) x(2.75) x(4.5) x(6.25) x(8) 
8 x(1) x(3) x(5) x(7) x(9) 
9 x(1) x(3.25) x(6.5) x(7.75) x(10) 

 
To reduce the computational complexity of the 

decimation filter, we used a fractional delay (FD) filter-
based decimation filter. With only a few taps, fractional 
delay filter can provide samples positioned in fine 
intervals between actual samples. When K=4, the 
decimation block produces output samples as shown in 
table 3 for M values. In this case, the FD filter should 
provide delays of 0.25, 0.5, and 0.75. Figure 3 shows 
the characteristics of the 4-tap fractional delay filters 
used in this paper. 

 

 
                    (a)                                         (b)  
 
Figure 3: Property of a 4-tap FD filter: (a) amplitude 
response and (b) Phase response  

 
Since the input signals of the decimation are outputs 

of IQ demodulation mixers, they contain harmonic 
components. In the direct structure (figure 2), the 
decimation filter is designed to remove the harmonic 
components completely. FD filters, however, do not 
have sharp magnitude response as shown in figure 3. 
Therefore, the decimation filter block proposed in this 
paper consists of two decimation blocks separated by a 
conventional LPF as shown in figure 4.  

 

 
 
Figure 4: The proposed decimation filter  
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 The pre-decimation is performed by using a 2-tab 
FD filter in conjunction with the following LPF. As 
illustrated in figure 5(a), the input signals from the 
quadrature mixers have down-converted base-band 
component and harmonic components, centered at 2f0, 
denoted by bold line.  The 2-tap FD filter has a role to 
apply delays to the base band component of figure 5(a), 
which are required to down samplie the signals so that 
the pre decimated signals have a spectrum as shown in 
figure 5(b). Since only the base band components 
require accurate pre-decimation delays, 2-tap FD filter 
is enough to serve as pre-dicimation filter. Now, the 
purpose of LPF is to remove the harmonic components 
shown in figure 5(b). To do this, we used a FIR LPF 
with 25 taps which has a magnitude response 
represented by dotted line in figure 5(c). Since the data 
rate was reduced by the pre-decimation block, this LPF 
has a low computation complexity. Finally, post 
decimation filter is used to generate 1024 delayed 
samples as described in table 3 as examples at the aimed 
data rate. 

The proposed algorithm was programmed 
preliminary, with no optimization efforts, in C language 
to find  that the clock cycles to process the decimation 
block was reduced greatly from 334,328 to 63,017.  
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Figure 5: Frequency spectrums of (a) input signal, (b) 
pre-dicimation output, (c) LPF output, and (d) post-
decimation output of the proposed decimation filter 
block. 

 
To reduce the toal number of clock cycles in table 2, 

magnitude calculator and log compressor are combined 
as  

 
2 2 2 21log( ) log( )

2
y i q i q= + = +

 
(1) 

 
and LUT is used to compute the logarithm. A poblem 
with this approach is that 22 qi + is 31-bit wide, requiring 
a LUT of 4Gbytes. Such a LUT is too big and should be 
implemented in external memories. Furtheremore, LUT 
requires random memory access, which is very slow 
compared to the direct internal memory access. 

Consequently, direct LUT method is not suitable for our 
purpose.  
    To implement the LUT approach more efficiently, we 
modified equation (1) as 

 
2 2 21 1log[ {1 ( / ) }] log( ) log{1 ( / ) }

2 2
i q i i q i+ = + +

 
(2) 

 
and used the following approximation: 

 
1 ln( ) ln( ) ln( 1) ln( ) ln( 1)

( 1)
d i i i i i

i di i i
− −= ≈ = − −

− −  
(3) 

 
Equation (2) can be calculated by using one LUT. 

The logarithm of i and 2)/(1 iq+  can be computed using 
the same LUT, which is only 64Kbytes, if qi ≥ . One 
can exchange i with q  in equation (2) when qi < . A 
LUT of this size can be located in the 1MB internal 
memory of TMS320C64x. 

Since division operation takes tens of cycles in 
TMS320C64x, however, calculation of 2)/(1 iq+ takes 
more cycles than magnitude calculation. The 
approximation in equation (3) eliminates the division 
operation.  As a result, the magnitude calculation and 
log compression blocks can be computed as  

 
14 2

6

1 18864log( ) log[2 { (log( ) log( 1)) } ] 2 log 7
2 2

y i q i i= + + − − × −
 

(4) 
 

The proposed algorithm was programmed with C 
language and tested on the TMS320C64x DSP. The 
results showed that the magnitude calculator and log 
compressor can be computed in only 11,602 cycles as 
opposed to 26,375 cycles in table 2 for a scanline 
consisting of 1024 samples. 

Equation (3) produces approximation error. 
However, in most cases, the error was negligible.  

 
Results 

 
The software echo processor using the proposed 

algorithms were run on a DSP board using two 
TMS320C64x processors to test its performance in  
processing speed and computation error.  

As was fore-mentioned, with the proposed algorithm, 
the processing time for decimation filter block was 
reduced from 334,328 to 63,017 clock cycles. The 
magnitude calculation and log compression blocks were 
also improved in the number of clock cycles from  
26,375  to 11,602.  

As a result, the highest PRF of the proposed echo 
processor increases from 3.4KHz to  6.54KHz when two 
TMS320C64x DSPs are used. This implies that in many 
cases where high frame rate greater than 20 is not 
required, the entire echo processor can be implemented 
with a single DSP. 
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 Finally, figures 6(a) and (b) show images of  the 
echo propcessor output when the conventional method 
and the proposed method are used, respectively. The 
two images look almost identical inspite of the errors 
caused by the approximation in equation (3). The 
difference between two images were 31.2307dB in 
PSNR. 

 
(a) 

 
 

Conclusion 
 
In this paper, we proposed an efficient cho 

processing algorithms for fast implementation with a 
commercial DSP TMS320C64x by TI. The most time 
consuming functions in the two sections of echo 
processor were computed with newly developed 
algorithms that can dramatically improve the processing 
time. The priminary experimental results show that the 
entire echo processor block can be implemented in 
software using two DSPs and supports up to PRF as 
high as 6.54kHz. Since this result was obtained without 
optimization efforts, the processing time can be further 
reduced if programmed using linear assembler and other 
techniques to best utilize the DSP architecture.  
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Figure 6: Comparison of ultrasound images obtained 
with (a) the conventional echo processor and (b) the 
proposed echo processor 
 


