
The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 EFFICIENT ULTRASOUND ECHO PROCESSING ALGORITHMS FOR
IMPLENTATION WITH TMS320C64x DSPs

Hak-Yeol Sohn, Hyun-Chul Kim, Dong-Hoon Han, Tai-Kyong Song

Center for Medical Solutions Reserch/Electronic Eng., Sogang Univ., Seoul, Korea

tksong@sogang.ac.kr

Abstract: DSP (digital signal processor)-based
ultrasound system has the advantage of easy
reconfiguration and use of previous design. These
offer reduced development cost and time. However
since the ultrasound imaging system requires high
data rate and huge amount of computations
compared to the commercial DSP, the
implementation of ultrasound imaging system based
on a DSP is challenging. In this paper, we
implemented the echo processor among many
functional blocks in ultrasound imaging system, and
proposed the new algorithm optimized to the DSP
architecture in order to enhance the system
performance.

Introduction

Conventional ultrasound imaging system is divided

into front-end and back-end segments. The front-end
segment is composed of an analog transmitter, an
analog receiver and a beamformer. The back-end
segment is composed of an echo processor and a DSC
(digital scan converter). Especially, the back-end
segment is suitable for implementation with a DSP
because it contains many one dimensional signal
processing blocks. The new algorithm can be easily
applied to these blocks.

However, since the data rate and computational
power of back-end segment is higher than those of the
commercial DSP. We must design an efficient DSP
system using many DSPs for realtime processing of
signal processing tasks in back-end segment. This
would result in a large increase in the development time
and the overall system cost. In this paper, we proposed
new algorithms to optimally implement the echo
processor using minimum number of DSPs.

In the next section, each functional block of the echo
processor is programmed with TMS320C64x to
evaluate its processing time. The echo processor shown
in figure 1 can be divided into two sections: the
functional blocks of the first half of the echo processor
contains DC cancel FIR filter, TGC (time gain
correction), quadrature demodulator and decimation
filter and the second half of the echo processor contains
magnitude calculator, log compressor, zone blending,
edge enhancement FIR filter, nonlinear filter and lateral
FIR filter.

First, we will propose efficient methods to reduce
the computation time of most time-consuming blocks of
eaccho processor sections. Secondly, the performance of

the software echo processor using the proposed methods
will be compared with the that of the conventional echo
processor. Finally, the poposed method is verified by
comparing tha images produced by both methods..

sin

cos

DC cancel TGC

Decimation
filter

Decimation
filter

Magnitude
calculator

Log
compressor

Zone
blending

Edge
enhancement

Nonlinear
filter

Lateral
filter

Figure 1: Conventional echo processor

DSP implementation of echo processor

Each functional block in the echo processor was

programmed in assembly or C language and various
algorithms were searched to program each functional
block efficiently. Especially, decimation filter required
the largest processing time and hence was efficiently
programmed using linear assembler for C64x. DC
cancel filter was also programmed in assembly
language.Other assembly coding? All other functional
blocks were programmed in C language. The results are
summarized in table 1, which shows the number of
cycles required for each functional block to process one
scan line data consisting of 7134 rf samples . The input
rate of the rf samples to the echo processor block is
40MHz throughout this paper.

Table 1: Processing time of each functional block in the
first half of the echo processor

Function Cycles/scanline
DC cancel filter 121,349
TGC 66,598
Quadrature demodulator 12,296
Decimation filter 334,328
Total cycles 536,571

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 Table 2 shows the number of cycles required for
each functional blocks of 2nd half of echo processor to
process 1024 inphase and quadrature data pairs per
scanline from the decimation block. The magnitude
calculator and log compression blocks contain the
transcendental functions such as squared root and log
functions, respectively. Such functions take too much
time to calculate directly using MAC (Multiply and
Accumulation) operations. Instead, we investigated
other methods for programming square root function,
including Newton Raphson algorithm. Among them,
CORDIC rotator algorithm, requiring only simple bit
shift and addition/subtraction, was used to calculate the
magnitude and the result is shown in table 2. The log
compression block was implemented using LUT (look-
up table) reference method instead of typical Taylor
series expansion method.

From the data given in tables 1 and 2, total number
of cycles to process all the functional blocks of the echo
processor was estimated to be 591,499. Since internal
clock period of TMS320C64x DSP is 1ns, the echo
processor can be programmed to support PRF up to
3.4KHz using two DSPs.

Table 2: Processing time of each functional block of the
second of the conventional echo processor

Function Cycles/scanline
Magnitude calculator 17,934
Log compressor 8,441
Zone blending 571
Edge enhancement filter 11,310
Nonlinear filter 13,316
Lateral filter 3,356
Total cycles 54,928

Table 1 shows that decimation block takes up more

than 60% of the total processing time of the 1st half of
the echo processor. In the 2nd half, magnitude
calculator and log compressor blocks require about 50%
of the computation time. To reduce the pocessing time,
we devised efficient algorithms for those blocks, which
can be programmed to run much faster on the target
DSP.

Figure 2 show the conventional decimation filter
architecture, in which upsampling is performed prior to
decimation filter to obtain finer decimation ratio.
Conventionally, the length of the decimation filter in
figure 2 increases in proportion of M. That is, it is
given by K×M. This implies that when K=16, 368 filter
taps are required for M=23. Therefore, direct
implementation of the decimation filter requires such a
large instruction cycles as shown in table 1.

Figure 2: Conventional decimation filter

If the decimation filter is implemented with the
polyphase structure, its length can be reduced to K
regardless of M. However, polyphase implementation of
the decimation block increases the overhead such as in
data manipulation and program flow control. Such
overheads tend to reduce the efficiency of software
pipelining and parallel execution of multiple
instructions, thereby increasing the overall processing
time.

Table 3: Illustration of input output relations for various
values of M

M y(1) y(2) y(3) y(4) y(5)
5 x(1) x(2.25) x(3.5) x(4.75) x(6)
6 x(1) x(2.5) x(4) x(5.5) x(7)
7 x(1) x(2.75) x(4.5) x(6.25) x(8)
8 x(1) x(3) x(5) x(7) x(9)
9 x(1) x(3.25) x(6.5) x(7.75) x(10)

To reduce the computational complexity of the

decimation filter, we used a fractional delay (FD) filter-
based decimation filter. With only a few taps, fractional
delay filter can provide samples positioned in fine
intervals between actual samples. When K=4, the
decimation block produces output samples as shown in
table 3 for M values. In this case, the FD filter should
provide delays of 0.25, 0.5, and 0.75. Figure 3 shows
the characteristics of the 4-tap fractional delay filters
used in this paper.

 (a) (b)

Figure 3: Property of a 4-tap FD filter: (a) amplitude
response and (b) Phase response

Since the input signals of the decimation are outputs

of IQ demodulation mixers, they contain harmonic
components. In the direct structure (figure 2), the
decimation filter is designed to remove the harmonic
components completely. FD filters, however, do not
have sharp magnitude response as shown in figure 3.
Therefore, the decimation filter block proposed in this
paper consists of two decimation blocks separated by a
conventional LPF as shown in figure 4.

Figure 4: The proposed decimation filter

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 The pre-decimation is performed by using a 2-tab
FD filter in conjunction with the following LPF. As
illustrated in figure 5(a), the input signals from the
quadrature mixers have down-converted base-band
component and harmonic components, centered at 2f0,
denoted by bold line. The 2-tap FD filter has a role to
apply delays to the base band component of figure 5(a),
which are required to down samplie the signals so that
the pre decimated signals have a spectrum as shown in
figure 5(b). Since only the base band components
require accurate pre-decimation delays, 2-tap FD filter
is enough to serve as pre-dicimation filter. Now, the
purpose of LPF is to remove the harmonic components
shown in figure 5(b). To do this, we used a FIR LPF
with 25 taps which has a magnitude response
represented by dotted line in figure 5(c). Since the data
rate was reduced by the pre-decimation block, this LPF
has a low computation complexity. Finally, post
decimation filter is used to generate 1024 delayed
samples as described in table 3 as examples at the aimed
data rate.

The proposed algorithm was programmed
preliminary, with no optimization efforts, in C language
to find that the clock cycles to process the decimation
block was reduced greatly from 334,328 to 63,017.

sf f02 f 02 f / 2sf

/ 2sfsf f sf f

sf f

Figure 5: Frequency spectrums of (a) input signal, (b)
pre-dicimation output, (c) LPF output, and (d) post-
decimation output of the proposed decimation filter
block.

To reduce the toal number of clock cycles in table 2,

magnitude calculator and log compressor are combined
as

2 2 2 21log() log()

2
y i q i q= + = +

(1)

and LUT is used to compute the logarithm. A poblem
with this approach is that 22 qi + is 31-bit wide, requiring
a LUT of 4Gbytes. Such a LUT is too big and should be
implemented in external memories. Furtheremore, LUT
requires random memory access, which is very slow
compared to the direct internal memory access.

Consequently, direct LUT method is not suitable for our
purpose.
 To implement the LUT approach more efficiently, we
modified equation (1) as

2 2 21 1log[{1 (/) }] log() log{1 (/) }

2 2
i q i i q i+ = + +

(2)

and used the following approximation:

1 ln() ln() ln(1) ln() ln(1)

(1)
d i i i i i

i di i i
− −= ≈ = − −

− −
(3)

Equation (2) can be calculated by using one LUT.

The logarithm of i and 2)/(1 iq+ can be computed using
the same LUT, which is only 64Kbytes, if qi ≥ . One
can exchange i with q in equation (2) when qi < . A
LUT of this size can be located in the 1MB internal
memory of TMS320C64x.

Since division operation takes tens of cycles in
TMS320C64x, however, calculation of 2)/(1 iq+ takes
more cycles than magnitude calculation. The
approximation in equation (3) eliminates the division
operation. As a result, the magnitude calculation and
log compression blocks can be computed as

14 2

6

1 18864log() log[2 { (log() log(1)) }] 2 log 7
2 2

y i q i i= + + − − × −

(4)

The proposed algorithm was programmed with C
language and tested on the TMS320C64x DSP. The
results showed that the magnitude calculator and log
compressor can be computed in only 11,602 cycles as
opposed to 26,375 cycles in table 2 for a scanline
consisting of 1024 samples.

Equation (3) produces approximation error.
However, in most cases, the error was negligible.

Results

The software echo processor using the proposed

algorithms were run on a DSP board using two
TMS320C64x processors to test its performance in
processing speed and computation error.

As was fore-mentioned, with the proposed algorithm,
the processing time for decimation filter block was
reduced from 334,328 to 63,017 clock cycles. The
magnitude calculation and log compression blocks were
also improved in the number of clock cycles from
26,375 to 11,602.

As a result, the highest PRF of the proposed echo
processor increases from 3.4KHz to 6.54KHz when two
TMS320C64x DSPs are used. This implies that in many
cases where high frame rate greater than 20 is not
required, the entire echo processor can be implemented
with a single DSP.

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 Finally, figures 6(a) and (b) show images of the
echo propcessor output when the conventional method
and the proposed method are used, respectively. The
two images look almost identical inspite of the errors
caused by the approximation in equation (3). The
difference between two images were 31.2307dB in
PSNR.

(a)

Conclusion

In this paper, we proposed an efficient cho

processing algorithms for fast implementation with a
commercial DSP TMS320C64x by TI. The most time
consuming functions in the two sections of echo
processor were computed with newly developed
algorithms that can dramatically improve the processing
time. The priminary experimental results show that the
entire echo processor block can be implemented in
software using two DSPs and supports up to PRF as
high as 6.54kHz. Since this result was obtained without
optimization efforts, the processing time can be further
reduced if programmed using linear assembler and other
techniques to best utilize the DSP architecture.

Reference

[1] LAAKSO T.I.,VALIMAKI V., (1996) :’Splitting

the unit delay[FIR/all pass filters design]’,
Signal Processing Magagine. IEEE, vol. 13, pp.
30-60, Jan, 1996.

[2] TEXAS INSTRUMENT, INC. (2005):
‘TMS320C6000 CPU and Instruction Set
Reference Guide’

[3] TEXAS INSTRUMENT, INC.
(2005): ’TMS320C6000 Programmers Guide’

[4] H.C KIM, J.H SIM, (2004): ’An optimized
software-based echo processing algorithm for
small scale ultrasound systems’, Ultrasonics
symposium, IEEE, vol. 3, p. 2053-2056

 (b)

Figure 6: Comparison of ultrasound images obtained
with (a) the conventional echo processor and (b) the
proposed echo processor

