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Abstract: Recently, an interesting application of
spectral method was presented in which the penal-
ized region growing and active surface techniques
were driving segmentation of star-shaped objects in
medical volume data obtained by noninvasive imag-
ing techniques. We extend these techniques by appli-
cation of Bayesian inference adapted to edge detec-
tion of noisy data instead of penalized region grow-
ing. The proposed algorithm offers a wide range of
possible applications, from segmentation of highly
noisy data to multimodal feature classification. We
present application of the method to segmentation of
ventricles in brain CT data affected by an aneurysm
and disturbed by a significant noise. Scenarios of
further improvements of Bayesian inference scheme
applied to noise affected and multimodal data are
provided in closing discussion.

Introduction

Segmentation of data from noninvasive medical
imaging is widely used for computer-aided diagnostic
and surgery. To achieve the most accurate or suitable
segmentation, a number of advanced techniques has
been developed [1]. Usually, most of these techniques
use time consuming algorithms leading to the required
segmented object or surface [2]. There is also a strong
need for the methods that directly provide constraints
for analytical models of shapes, surfaces and objects
which can be further numerically processed by a vir-
tual forces acting on their surfaces. This makes possible
the prediction of deformation resulting from an invasive
surgery or - monitoring the elastography of an object in-
teracting with the surroundings within the body.

The process of reconstruction of a shape or surface
may be effectively sped up by an application of spectral
method based on fast Fourier transforms (FFT). This
approach has the advantage of being rapid and accurate
providing also the approximated surface that can be eas-
ily parametrized analytically by use of harmonic func-
tions, splines or wavelets. An interesting application of
such method, adapted for star-like objects has been pro-

posed recently [3]. We partially follow this approach
providing a different method for edge estimation based
on Bayesian inference instead of volume penalization.
This has the advantage of incorporating a wide range
of the a priori knowledge coming from other modali-
ties and global properties of structure. Throughout this
paper we briefly describe the use of partial differential
equations, we characterize the basics of Bayesian in-
ference and its application into edge detection, we in-
troduce the spectral method and the resulting novel al-
gorithm as well as its application to CT data of brain
ventricles. We discuss the results and the current limi-
tations of the algorithm and provide some conclusions.

Methods

Application of PDE’s in Shape or Surface Reconstruc-
tion

To recover an active surface from a data set we can
approximate it by a set of shapes extracted from subse-
quent slices or describe the surface as a composition of
the sum of an ensemble of 3D functions carrying details
on different scales. The former approach is the subject
of this study and serves as a direct basis for the latter.
Let g = g(θ) be a noisy radial function defined in 2D
spherical coordinates. The function g is called the po-
lar edge map and can be estimated by a rough object’s
edge detection method like basic thresholding or wa-
tershed algorithm. The method is valid only for star-
like objects with circumference described by g. To find
function f (θ), the smooth representation of g, serving
in fact as an approximation of the desired active shape,
we need to apply a method directly revealing f by min-
imazing the energy functional:

E( f ,g) = µ
∫

S
Y ( f ,g)dΩS +

∫

S
Z( f )dΩS (1)

In the above eqution Y denotes the distance be-
tween the function f and polar edge map g, Z mea-
sures the reconstruction smoothness and µ is responsi-
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ble for the tradeoff bewteen the faithfulness to the seg-
mentation data and smoothness of the surface. dΩS is
a differential shape element on the unit circle. Setting
Y ( f ,g) = ( f (θ)− g(θ))2 and Z( f ) =‖ ∇ ‖2, where ∇
is the gradient operator the energy functional becomes

E( f ,g) =
∫

S
µ( f (θ)−g(θ))2dΩS +

∫

S
‖ ∇ ‖2 dΩS

(2)
E( f ,g) can be further minimized over f by the usage

of calculus of variation to determine an Euler-Lagrange
equation for a stationary point of the above energy func-
tional. This procedure yields the following equation:

∇2 f −µ( f −g) = 0 (3)

This is an elliptic equation of Helmholtz type as is
our case of spherical coordinates. Moving the g term
to right hand side and relating it to a previously found
value of f , called fn the PDE can be expressed in lin-
earized form:

α∇2 fn+1− fn+1 = g fn (4)

which can be easily solved by the fast spectral
method, with α = 1/µ . The dependence of g fn on g
and other data is the essence of our approach and is ex-
plained throughout next subsections.

Bayesian Constraint on Edge Map Determination

The most important contribution of this work is
the bayesian method for edge map determination. The
bayesian methodology provides the best choice among
all others taking into account the risk associated with
each one and their mutual relationship [4].

Let P(Ei/I) denote the required probability of the
most appriopriate edge in our existing data set. This is
conditional probability as it depends on the content of
I. P(Ei/I) describes how much the given data point in I
belongs to the edge Ei knowing the value of this point.
It is intensity in our case and the knowledge we look
for. Let P(I/Ei) be a probability of how much the value
or intensity of a point is depending on edge Ei. This
term serves as a kernel. P(Ei) is simply the probability
of existence of the edge Ei among all other detected
edges. Then the required probability can be found by
solving the Bayes rule:

P(Ei/I) =
P(I/Ei)P(Ei)

P(I) =
P(I/Ei)P(Ei)

∑i P(I/Ei)P(Ei)
(5)

P(I) is a sum of all probabilities P(I/Ei) weighted
by P(Ei) and thus remaining constant. P(I) is only a
normalizing term and can be excluded from further
analysis. The standard way of solving the equation is

the maximization of the right hand side over the pa-
rameter Ei and then maximization of the found solu-
tion over all accesible data. The former procedure is
known as maximum likelihood (ML) and the latter as
maximum-a-posteriori (MAP). The P(Ei) is a prior and
we put our a priori knowledge inside it.

In practice we are estimating the P(I/Ei) from the
histogram of I. The histogram is shrank in such a way
that each bin is equal to the edge size assuming that
each expected edge covers the same number of inten-
sity levels. Calculating the normalized probability over
all edges Ei we are performing ML step and estimating
the most probable edge in I. Then the MAP is done by
searching for maximum over the data itself, and usu-
ally the first maximum in P(I/Ei) is detected as an
edge. The P(Ei) is simply of constant value. Having this
knowledge we can easily determine the position of edge
in I even if the data is highly corrupted by noise.

Performing the classification of P(E/I) we estimate
G, which is bayesian constrained edge map. Calculat-
ing it for each θ j we find the representation of rough
polar edge map. This process is summarized by follow-
ing equations:

G = classi f ication(P(E/I)) (6)

and

g(θ) = G(θ) (7)

Fast Spectral Method

The spectral methods are widely used for all kind of
problems that can be expanded into Fourier series. For
the purpose of this study we adapt Cheong’s method to
solve the equation 3. We express the Laplacian operator
∇2 on the unit circle:

∇2 =
1

sinθ
δ

δθ
(
sinθ

δ
δθ
)

(8)

Both functions, f and g are defined on the computa-
tional grid (θi), where θi = π( j + 0.5)/J. J is the num-
ber of points along the longitude of unit circle’s circum-
ference high enough to engage all points covered by g.
Each point in g may be now expressed by its discrete
cosine transform (DCT) representation yielding:

g(θi) =
J−1

∑
n=0

gncosnθi (9)

with gn being simply the coefficients of discrete co-
sine transform. Applying 8 into 3 we can write the equa-
tion 3 as an ordinary differential equation (ODE):

1
sinθ

δ
δθ
(
sinθ

δ
δθ

f (θ)
)

= µ[ f (θ)−g(θ)] (10)
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which yields an algebraic system of equations in
Fourier space:

pn−2 fn−2− pn fn + pn+2 fn+2 = µ
[1

4gn−2−
1
2gn +

1
4gn+2

]

(11)
where

pn−2 =
(n−1)(n−2) + µ

4 (12)

pn =
n2 + µ

2 (13)

pn+2 =
(n + 1)(n + 2) + µ

4 (14)

after substitution of 9 into 10 and expressing f in the
same way as g (eq.9). The index n = 1,3, ...,J− 1 for
odd n and n = 0,2, ...,J− 2 for even n. The system of
equation 11 may be now expressed as a double matrix
equation:

Be f e = Aege (15)

Bo f o = Aogo (16)

with subscripts e for even and o for odd n, f and g
denote the column vector of expansion coefficients of
f (θ) and g(θ), respectively. B is a tridiagonal matrix
containing the left hand side of equation 11 and A is
tridiagonal matrix with constant coefficients along each
diagonal corresponding to right hand side of 11.

The algorithm

The performance of shape reconstruction is done in
two steps. Firstly, we analyze the data and classify the
most probable edges according to given benchmarks.
This is realized by bayesian procedure described previ-
ously. Secondly, the equation 4 is solved in an iterative
way, and in the each step the right hand side term is up-
dated by its current approximation obtained by inverse
DCT (IDCT) from the cosine expansion coefficients de-
rived from the residuals remaining after substraction of
the rough edge map and currently found solution, ob-
tained by IDCT from the vector fn. The calculated set
of expansion coefficients fn+1 serves for the reconstruc-
tion of fi, the representation of g on the certain level
of approximation i. This function carries the informa-
tion about the structure of the real edge on given scale
i. Summing all partial functions fi we recover the re-
quired smooth approximation to g, recovering the most
probable edge map.

Data

To test the algorithm we use the CT data, af-
fected significantly by high level of noise. This circum-
stance introduces uncertain edge position and causes

Figure 1: Raw data including the brain ventricles. High
level of noise makes it hardly detectable and provides
ill-posed edges.

the poor quality of data. The adapted data set is pub-
licly available on the web [5] and presents the brain
with aneurysm. We are focused on brain cavities (ven-
tricles) segmentation from the previously extracted data
subset, covering the region of ventricles through 10 ver-
tical slices. The structure in the image is hardly visible
and nondetectable under 3σ level, where σ is standard
deviation of all image pixels.

Results

The results are presented through Figure 2 to 4. The
noisy image of brain ventricles is composed of nar-
row range of 30 intensity levels. The effect of the al-
gorithm’s performance is shown in Figure 2. There
are regions where the roughly eye-estimated detection
is very good and some with rather high discrepancy,
especially along vertical axis of the ventricles struc-
ture. This is due to some bright spots found over and
below the ventricles which incorporate high gradients
misinterpreted as a proper edge. The artefacts of this
kind are hard to avoid in real noisy scans and dis-
turb the bayesian edge detection. Fortunately, the spec-
tral method smooths the required solution and much of
this disturbance is removed from final region border,
as shown on Figure 3. Through the next section we
briefly discuss how to avoid such misinterpretation un-
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Figure 2: The Bayesian estimation of edge shape and
position in the image data. Bright points mark all de-
tected edges. The detection of an edge means the oc-
curence of an edge of the highest probability. According
to some distortions in the image some imperfections in
the edge recognition are visible on the upper and lower
part along the image vertical axis.

der Bayesian inference. As one can notice from Fig-
ure 4 the bayesian constrained spectral segmentation
provides smooth and very natural output. Traditional
thresholding methods provide typical region with sharp
and complicated edges, resembling its fractal nature.
This artifact comes from noise which hides the real
structure which is usually much more ordered in liv-
ing macroscopic tissues. Thresholding bases on local
properties in opposition to Bayesian constrained spec-
tral method which reveals the entire shape at once tak-
ing advantage of all mark points.

The active surface of ventricles is composed of ac-
tive shapes extracted from each slice and its example is
presented on Figure 5. All shapes have been combined
as a volume and rendered to show 3D structure of ven-
tricles with the application of method described in [6].
The image shows hidden smooth natural representation
of ill-posed fuzzy structure carried by data.

Discussion

It is clearly seen that the thresholding scheme re-
veals the border depending only on the local informa-

Figure 3: The segment border reconstructed by pre-
sented algorithm based on spectral method. The curve
was recovered from Bayesian edge mark points shown
on Figure 2.

tion, contained in the most neighbouring pixels while
the Bayesian constrained spectral analysis recovers the
border based on the total properties of the entire struc-
ture. The edge found by the thresholding scheme rep-
resents the real surface rather poorly introducing many
local rich substractures. Although this can be decreased
by means of sophisticated morphological analysis the
Bayesian inference on edge determination naturally
provides the desired shape or surface. It also highly sup-
ports the global analysis of the structure, providing the
basis for elastography. This is due to the fact that the fi-
nal shape or surface is composed of a number of less
detailed curves or surfaces and each one can be fur-
ther parametrized by base functions (splines, wavelets
or harmonic functions) directly leading to an analyti-
cal model of surface that can be influenced by an exter-
nal or internal force. The summation of partial shapes
or surfaces on different levels of details also effectively
supports the multiresolution properties of surfaces, that
can be performed for some diagnostic reasons.

The Bayesian inference in application to edge detec-
tion can be further enhanced and developed. In the ap-
proach shown throughout this study we are maximizing
only the ML step, limiting the MAP step to the detec-
tion of the first edge on given radius only. This can be
more efficiently performed by maximizing MAP over a
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Figure 4: Comparison of Bayesian derived segmenta-
tion with that done by the best thresholding.

larger data set coming from neighboring radii or some
predefined neighborhood. Further, the MAP maximiza-
tion can be introduced by applying other modalities cor-
responding to a locally analyzed region in which the
required edges are much more visible. Combining CT
and PET is a good example of multimodal Bayesian in-
ference to recover the edges in PET data. In PET the
edges are almost invisible and additional information
from CT, where they are easily detectable is necessary.
Maximizing the MAP step is also a way to remove ar-
tifacts mentioned in section 3 (see 2 and 3). Increas-
ing the data region for the MAP step or incorporating
the information from edge filters into the MAP step
can also increase the probability of right edge detec-
tion and decrease that of the fake one what leads to
complete removal of all artifacts. Moreover, the proper
choice of different nonuniformly distributed priors is
going to significantly improve the algorithm’s perfor-
mance. This work is a subject of further research on the
presented methods.

Conclusions

The new method presented here combines well-
known and widely used methodologies, fast spectral
method and Beyesian inference. Both ofer specific
features, effectively supporting certain class of prob-
lems like segmentation and parametrization of moving

Figure 5: The final surface derived by Bayesian con-
strained spectral method applied to 10 slices indepen-
dently.

shapes or surfaces that change their geometry in time.
Although the method is limited to for radially described
structures only, like liver, heart, some brain subsec-
tions, it is well suited for the analysis of noisy and dis-
turbed data. Bayesian approach allows for more com-
plex choice of priors and effective incorporation of any
prior knowledge taken from other modalities as well as
from the analysed data itself. Providing rapid algorithm
this methodology is a promising direction of research
for current and future applications.
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