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Abstract: Independent component analysis (ICA) of 
functional magnetic resonance imaging (fMRI) data 
can be employed as an exploratory method. The lack 
in the ICA model of strong a priori assumptions 
about the activation related signal or about the noise, 
leads to difficult interpretations of the results by the 
experimenters. Moreover, the statistical 
independence, hypothesized in the model, is only 
approximated by ICA algorithms. Residual 
dependencies among the extracted components can 
be investigated in order to reveal some informative 
structure in the data. In this work we propose a 
method based on hierarchical clustering algorithm in 
order to classify the results of ICA applied to fMRI 
dataset: the clustering algorithm uses a similarity 
measure based on mutual information between the 
extracted components.  This method could be useful 
also to overcome the ambiguity related to the model 
order selection. The method was tested on simulated 
datasets. Preliminary results on real data  are 
reported and discussed. 
 
Introduction 
 

Functional exploration of the brain by means of 
Magnetic Resonance Imaging (fMRI) is a rapidly 
growing technique: fMRI data analysis methods can be 
classified in confirmatory, or hypothesis-driven 
methods, and exploratory or data-driven methods. While 
the former are used in order to test the validity of the 
experimenters’ hypotheses they do not allow to detect 
unexpected phenomena, i.e. that are not  modelled a 
priori. On the other hand, the latter gives results that are 
based on general assumption about the signal generation 
but are often difficult to be interpreted.  

Independent Component Analysis (ICA) is one of 
the most used exploratory methods and it is based on the 
assumption of statistical independence of the 
components extracted. This method has proven its 
capabilities in order to separate physiological 
component of different origin, detect unexpected 
phenomena, as activations transiently time locked with 

the stimulus, or artefacts related signal changes, as those 
due to movements [1].  

One of the main drawbacks of the ICA approaches is 
that the extracted components are difficult to be 
classified since the components do not show an order or 
relationships among them. Furthermore the best number 
of components to be extracted, i.e. the model order, is 
not known a priori.  

The hypothesis of statistical independence among 
the estimated ICs in these models is only approximated: 
the finite number of observations for each measurement 
does not allow estimating higher order statistics [2] 
exploited to search for statistical independence so a 
residual dependency between the extracted components 
can still be found. This residual dependency can be used 
to reveal some structure in the dataset, thus to provide 
further information about the data. A topographic 
approach has been suggested for ICA [2] where the 
model was modified to take into account a topographic 
order between the extracted components: the distance 
between two elements in the topographic maps is related 
to the residual dependency.  

In this work we propose a classification criterion 
using a distance measure between the components 
derived from an estimate of the mutual information. A 
hierarchical clustering stage is then applied to these 
distances set in order to classify spatially independent 
maps of fMRI and identify interesting groups of 
components. This method could be used both to reveal 
informative relationships between the ICs and to give 
information about the model order, i.e. the best number 
of independent components to be computed. The 
proposed method was tested on simulated and 
experimental fMRI datasets. 
 
Materials and Methods 

 
Datasets from fMRI are formed by a time sequences 

of images or volumes, acquired while the subject is 
performing some sensory/motor or cognitive task. The 
experimental paradigm is a block design, with two 
different alternating conditions. This task is designed to 
elicit a blood oxygenation level dependent (BOLD) 
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 signal change detected by the MR equipment, usually 
by means of gradient echo-echo planar sequences (GE-
EPI). 

Simulated data: a synthetic brain data set is used [4]. 
Signal increase in response to neural activation is 
simulated convolving the time course describing the 
task with a typical hemodynamic response function. We 
chose the three parameters gamma variate function 
defined as 547.0/60.8)( tektth −=  [5], where k is a 
constant. The simulated task is a block designed 
alternating 15 seconds ON with 15 seconds OFF 
conditions. The total time length of each simulated 
dataset is three minute for a total number of scans equal 
to 60. The activated regions are created modulating the 
baseline intensities of a group of voxels, selected using 
a mask, with the time series previous described. 
Activated regions are supposed to be limited in a region 
of connected voxels and they can be obtained using a 
mask formed by region smoothed with a gaussian 
kernel, in order to simulate the point spread function 
due to the vasculature. The gaussian kernel is a 
bidimensional one with 3 mm full width half maximum 
(FWHM) parameter. All the simulations we present in 
this paper were obtained by defining two activated 
regions of about 2 centimetres of diameter: in the 
following we denote these activated regions as region of 
interest (ROI) number 1 and number 2. The signal 
change in all the simulations we present here is about 2 
percent as compared to the baseline level in the center 
of the activated regions. Different time delays between 
the activation time courses of the two regions were 
simulated: 1.25, 2.5 and 5 seconds. 

The noise in the images is supposed to be gaussian 
distributed with zero mean and variance σ. For each 
delay value, different noise levels were simulated. The 
simulated noise standard deviation was 0.33%, 0.66%, 
1%, and 1.33% of the mean image value at the baseline 
level. The contrast to noise ratio, defined as 

σSCNR ∆= , where S∆  is the signal change 
following an activation, equals to, approximately, 6, 3, 
2, 1.5: this is the maximum value at the center of the 
activated regions. 

Real data: Brain activity was measured in a 25-years 
old right-handed male adult. The subject gave informed 
consent for the test. The scanner used is a 1.5 Tesla, GE 
Signa Cv/i. An anatomical images was acquired with a 
3D GRASS sequence. The functional scans were 
gradient echo-EPI with TR=3 sec TE=40 msec, FA=90 
degrees, bandwidth 62.5 kHz. Twenty axial slices 
covering the all brain where acquired with slice 
thickness of 5 mm, 24 cm FOV, and a in plane 64 x 64 
spatial resolution, and the number of time frames was 
25. The subject head was restrained with foam in order 
to avoid big head movements. The subject performed a 
simple finger tapping sequence with his right hand 
fingers: the task was a simple block design paradigm 
alternating 15 sec on with 15 seconds off conditions. 
The total number of scans was 60 for a total run length 
of three minutes. Images were spatially realigned and a 
smoothing operation was performed to enhance signal-

to-noise ratio. These pre-processing steps were 
performed using AFNI [6]. 

Methods: In spatial ICA we can write the observed 
data as ( ) ( ) ( ) ( ) Tx ]νx,...,νx,νx[ n21=ν , where xi is the i-th 
image or volume in the sequence and ν is a spatial index 
for each volume element (voxel). The observed data x, 
can be written as a linear mixing of spatially ICs si:  

 
( ) ( )νν Asx =  (1) 

 
where ( ) ( ) ( ) ( ) Ts ]νs,...,νs,νs[ n21=ν . Both si and the 

mixing matrix A are unknown. In this model xi and si 
are seen as random variables and ν  is an index for the 
observations of each random variable. 

The ICA problem consists in finding an unmixing 
matrix W as an estimate of A-1 so that the estimate of the 
independent components can be written as Wxs =~  with 
the hypothesis that the mixing matrix is invertible. Each 
estimated component is~  can thus be written as a linear 

combination of the observed variables xws T
ii =

~ , with 
wi the i-th column of W. The original observations can 
then be written as sWx ~1−= . Each is~  can be seen as a 
spatial map, individuating a value for every voxel. The 
i-th spatial fixed map is time modulated by the 
corresponding time course, given by the i-th column of 
W-1. 

The ICs can be estimated using a method based on 
the maximization of the nongaussianity of the is~ [6]. A 
robust approximation of nongaussianity of a random 
variable y is given by negentropy that is defined as 
( ) ( ) ( )yH-yHyJ gauss=  where ygauss is a gaussian 

random variable with the same variance as y, and ( )⋅H  
is the entropy function. The model (1) assumes that the 
number of sources, or ICs, equals the number of 
observed mixtures. This hypothesis does not hold in 
general and in many applications, as in ICA of fMRI 
data, the number of underlying sources is supposed to 
be less than the number of observed variables, i.e the 
number of acquired images. This assumption may be 
not satisfied and the number of underlying sources is 
supposed to be less than the number of observed 
mixtures. A data reduction operation is performed as a 
preprocessing step. This preprocessing step is 
performed along with a whitening operation: the 
observed variables x are transformed in uncorrelated 
variables z with unit variance. This operation allows to 
simplify the successive algorithmic steps since the 
unmixing matrix becomes orthogonal with n(n-1)/2 
degrees of freedom instead of n2. 

A fast fixed point algorithm [8] can be used to find 
the weights wi such that negentropy of is~  is maximized. 
The algorithm employed, at each step updates the 
weights wi as follows 

 
( ){ } ( ){ }wzwgEzwzgEw T

i
T
ii ′−←  (2) 
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 where ( )⋅g is a nonlinear function of the estimated 
components used to approximate higher order statistics. 
Different nonlinear functions can be chosen for different 
application, depending upon the distribution of the 
sources to be found: in this work we 
use ( ) ( )yag 1tanh=⋅ with a1 constant. It can be shown 
that maximizing the nongaussianity of uncorrelated 
variables is the same as minimizing the mutual 
information between them: as described in the 
introduction, all the algorithms for ICA lead to 
components that are only approximately statistically 
independent. 

In order to classify the components and explore the 
residual dependencies among them, a pairwise distance 
measure is estimated. The distance between two 
components si and sj is based upon the definition of 
mutual information as follows: 

 
( ) ( ) ( )jijiji s,ss,ss,s IHD −=  (3) 

 
where ( )ji s,sH  is the joint entropy and ( )ji s,sI is the 
mutual information between two sources. The choice to 
use ( )ji s,sD  rather than ( )ji s,sI  is based on the fact 
that the latter is not a distance in the mathematical 
sense. 

To compute the measure in equation 3, a histogram 
based technique was used: the estimated sources values 
are partitioned in bins or intervals. The probability that a 
variable value, i.e. independent component, lies in the k-
th interval ak can be found as the frequency of 

occurrence, so that we can write ( )
N

N
asp k

ki =⊂  

where N is the total number of observations for si and Nk 
is the number of times si belongs to the k-th interval. 
We’ll write this probability as ( )kap . 

The probability that the variable si lies in the h-th 
interval while the variable sj lies in the k-th interval is 

given by  ( )
N

N
asasp hk

kjhi =⊂⊂ , where Nhk is the 

number of times the couple (si, sj) belongs to the 
bidimensional bin [h,k]. This quantity can be written as 
( )kh aap , . 

The joint entropy was computed as 
 

( ) ( ) ( )( )khkh
hN

h

kN

k
bapbapH ,log,s,s ji ∑ ∑−=

= =1 1
 (4) 

 
while the Mutual Information was computed as  

 

( ) ( ) ( )
( ) ( )⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
∑ ∑=
= = kh

kh
kh

hN

h

kN

k bpap
bap

bapI
,

log,s,s ji
1 1

 (5) 

 
where Nh and Nk  are the number of states, or bins, for 
variable si and sj respectively. 

An adaptive partitioning operation  was applied in 
order not to have the results blurred by individual 

distributions of the components [8]. This was obtained 
by a rank ordering operation of the elements of each 
independent component. 

A hierarchical clustering approach based on the 
Ward method [10] is proposed to classify and visualize 
the similarities between the extracted ICs: this method 
consists in merging every possible cluster pair and 
choosing the one which minimizes the information loss. 
A dendrogram can be used to visualize the merging of 
the components.  

In order to correctly interpret the results of the 
hierarchical clustering algorithm applied to the extracted 
independent components from simulated datasets, each 
IC has to be classified. The interesting ICs among the 
extracted, can be detected looking at the correlation 
coefficient between the corresponding time courses and 
the activated region time courses: an independent 
component whose corresponding time course highly 
correlates with the activation time course is said to be 
consistently task-related (CTR) component as in [1]. 
The spatial accuracy of the independent maps has been 
evaluated as well as the ability to separate the two 
activated regions. Each independent map is transformed 
into a z map statistics as suggested in [1] to find the 
voxels, in the individual maps, contributing significantly 
to the respective component: given an independent map 

si the z map can be computed as 
i

ii ms
z

σ
−

= where mi 

is the mean of the values of si and σi their standard 
deviation. The performance of the ICA in detecting and 
separating the activation regions was evaluated using 
receivers operating characteristics (ROC) curves [11] 
that are plots of true positive fraction against false 
positive fraction obtained varying the threshold level of 
the z maps. The area under curve (AUC)[12] was 
estimated to assess the detection accuracy of the 
method: an AUC ranging from 0.7 to 0.8 is considered a 
results showing a fair accuracy of the test performed, 
between 0.6 and 0.7 is considered a poor accuracy 
index. An independent component whose AUC is 
significant for both ROIs is a component that merges 
both the two activated regions. 

Another ambiguity is given by the effects of model 
order misspecifications: in fact underestimating the 
model order may cause an information loss while 
overestimating the model order may cause overlearning 
and generate spurious components. For these reasons 
the method was tested on simulated datasets against 
different model orders, i.e. number of extracted 
components: the number of ICs extracted was, for each 
dataset, equal to 10, 15 and 20. 

The same approach was used for the application on 
real dataset example. In this case it is not possible to 
estimate an AUC performance parameter, since we 
don’t know a priori the spatial distribution of the 
activated regions. It is possible to detect interesting 
components by looking at the correlation coefficient 
between the associated time course for each map and 
the expected hemodynamic time course, given the 
experimental paradigm. 
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 Results 
 

Simulated datasets results: Results from ICA in 
simulated datasets are summarized in tables 1 2 and 3. 
The tables refer to results for the delays between the 
activations time courses equal to 1.25, 2.5 and 5 seconds 
respectively. The two activated regions are indicated by 
ROI number 1 and number 2. For each table different 
noise level results are summarized. The number of the 
IC whose time course highly correlate with the 
activation time course of the relevant ROI is indicates in 
brackets. Since in ICA the extraction order of the 
independent component cannot be determined, the IC 
number is important to determine whether a component 
pertains to a single ROI or both.  

 
Table 1: Evaluation of ICA of the dataset with 
activations in ROI #1 and ROI #2 with time delay of 
1.25 seconds, at different noise levels and model orders. 
The AUC is shown near the IC number (in brackets). 

 
Activations 
Delay 1.25 
sec 

Number 
of ICs 

ROI #1 
(IC number) AUC 

ROI #2 
(IC number) AUC 

10 (3) 0.77 (6) 0.71 (5) 0.77 (4) 0.72 
15 (4) 0.77 (14) 0.77  (1) 0.79 (3) 0.77 

noise 
σ=0.33% 

20 (4) 0.76 (13) 0.78 (5) 0.74 (6) 0.69 
(9) 0.77  

10 (4) 0.72 (7) 0.72  
(8) 0.7 

(4) 0.68 (6) 0.72 
(7) 0.72 

15 (2) 0.7 (8) 0.75 (4) 0.75 (7) 0.68 

noise 
σ=0.66% 

20 (1) 0.71 (11) 0.75  
(20) 0.66 

(10) 0.73 
(11) 0.71 (20) 0.7 

10 (3) 0.7 (7) 0.68  
(8) 0.62 (9) 0.67 

(3) 0.7 (7) 0.7 
(8) 0.7 (9) 0.65 

15 (5) 0.77 (6) 0.77  
(12) 0.74 (13) 0.68  

(5) 0.75 (6) 0.75 
(12) 0.75 (13)0.73 

noise 
σ=1.00% 

20 (18) 0.7 (20) 0.73  (18) 0.73 (20)0.74 
10 (2) 0.73 (3) 0.74 (2) 0.7 (3) 0.76 
15 (8) 0.75 (11) 0.67 (8) 0.71 (11) 0.72 

noise  
σ=1.33% 

20 (4) 0.72 (20) 0.66 (4) 0.7 (20) 0.73 
 
Table 2: Evaluation of ICA of the dataset with 
activations in ROI #1 and ROI #2 with time delay of 2.5 
seconds, at different noise levels and model orders. The 
AUC curve is shown near the IC number (in brackets). 
 
Activations 
Delay 2.5 
sec 

Number 
of ICs 

ROI #1 
(IC number) AUC 

ROI #2 
(IC number) AUC 

10 (3) 0.78 (8) 0.8  (1) 0.76 (2) 0.74 
(9) 0.77 

15 (5) 0.8 (7) 0.8 (9) 0.8 (10) 0.8 
(11) 0.71 

noise 
σ=0.33% 

20 (2) 0.7 (5) 0.7  
(6) 0.7 (15) 0.74  

(11) 0.77 (17) 0.79 
(19) 0.77 

10 (3) 0.8 (15) 0.78 (5) 0.84 (15) 0.76 
15 (2) 0.77 (8) 0.78 (10) 0.78 (9) 0.8 

noise 
σ=0.66% 

20 (5) 0.79 (6) 0.76  (1) 0.78 (2) 0.77 
10 (1) 0.75 (5) 0.8 

(7) 0.69 
(4) 0.75 (10) 0.76 

15 (1) 0.73 (3) 0.7 (6) 0.7 (14) 0.74 
(15) 0.72  

noise 
σ=1.00% 

20 (2) 0.68 (6) 0.74 (2) 0.7 (17) 0.79 
10 (4) 0.65 (10) 0. 71 (4) 0.76 (10) 0.61 
15 (11) 0.74 (14)0.65 (11) 0.65 (14) 0.74  

noise 
σ=1.33% 

20 (4) 0.74 (16) 0.64 (6) 0.69 (16) 0.67 

Table 3: Evaluation of ICA of the dataset with 
activations in ROI #1 and ROI #2 with time delay of 5 
seconds, at different noise levels and model orders. The 
AUC curve is shown near the IC number (in brackets). 
 
Activations 
Delay 5 sec 

Number 
of ICs 

ROI #1 
(IC number) AUC 

ROI #2 
(IC number) AUC 

10 (3) 0.77 (7) 0.76  
(8) 0.78  

(5) 0.76 (9) 0.79 
(10) 0.76 

15 (6) 0.79 (10) 0.74 
(14) 0.78 

(4) 0.74 (11) 0.8 

noise 
σ=0.33% 

20 (19) 0.9 (8) 0.74 (11) 0.76 
(17)0.77 

10 (2) 0.72 (3) 0.77 (5) 0.84 
15 (7) 0.74 (12) 0.76 (2) 0.75 (4) 0.74 

noise 
σ=0.66% 

20 (2) 0.76 (3) 0.75 (11) 0.78 (16) 0.75 
10 (9) 0.74 (10) 0.77 (3) 0.76 (7) 0.76 
15 (5) 0.7 (10) 0.68 

(15) 0.73 
(1) 0.76 (8) 0.73 
(11) 0.7 

noise 
σ=1.00% 

20 (15) 0.8  (7) 0.76 (13) 0.76 
10 (9) 0.82 (4) 0.76 (5) 0.76 
15 (14) 0.83 (5) 0.71 (11) 0.76 

noise 
σ=1.33% 

20 (12) 0.85 (2) 0.76 (15) 0.76 
 
The area under curve (AUC) is indicated as well. In 

the case of a shorter time delay between the activations 
time courses of the two ROIs with noise standard 
deviation greater than 0.33%, the two ROIs cannot be 
distinguished by the ICA model: so the same IC number 
appears in both columns. The same results are obtained 
for a time delay of 2.5 seconds at higher noise levels. 

In Figures 1-2 typical dendrograms obtained from 
clustering operation in simulated datasets are shown.  

 

a)  

b)  
 

Figure 1: Dendrogram obtained from clustering of the 
pairwise mutual distances between extracted ICs from 
simulated datasets in the case of noise level σ=0.33% 
and time delay 2.5 seconds with model order equal 15 
(a) and 20 (b). 

 
In each case the components corresponding to the same 
activation regions are merged together. In figure 1 the 
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 results for noise level equal to 0.33% and time delay 2.5 
seconds are shown. In this case the two regions of 
activation are distinguished by the ICA model, as can be 
seen from table 2, and the corresponding ICs are 
grouped together for each model order. In figure 2 the 
results for noise level equal to 1% and time delay 1.25 
seconds are shown: as it can be seen from table 1, the 
two activation regions are not distinguished by the ICA 
model. In both dendrograms the interesting IC 
components are merged together.  
 

a)  
 

b)  
 

Figure 2: Dendrogram obtained from clustering of the 
pairwise mutual distances between extracted ICs in the 
case of noise level σ=1% and time delay 1.25 seconds 
with model order equal 10 (a) and 20 (b). 
 

Real dataset results: The ICA model applied to real 
dataset with a model order equal to 10, detected one 
CTR IC: in figure 3 the corresponding map thresholded 
for 2>z  is shown superimposed to an anatomical T1 
weighted mask. 

The ipsilateral and controlateral primary motor areas 
are shown along with the supplementary motor area 
(SMA). Both with model order equal to 20 and equal to 
30, two ICs were found to correlate with the 
experimental paradigm: the results are shown in figures 
4 and 5 respectively. The primary motor areas and the 
SMA were detected by different ICs in both cases. The 
hierarchical clustering algorithm, as shown in figure 6, 
succeeded in merging together these components both 
for model order 20 (figure 6 a) and model order 30 
(figure 6 b): the interesting components were merged 
with some other components that were not identified at 
a first level, then merged together at a second level. 
 

 
 
 

Figure 3: consistently task related (CTR) IC for real 
dataset with model order equal to 10. The IC map is 
superimposed upon an anatomical image and 
thresholded with 2>z . 

 

  
 
 

Figure 4: CTR ICs for real dataset with model order 
equal to 20. On the left the component number 8 is 
shown pertaining the SMA activity while on the right 
the component number 7 is shown, pertaining activity in 
the ipsilateral and controlateral primary motor areas. 

 
 

  
 

Figure 5: CTR ICs for real dataset with model order 
equal to 30. On the left the component number 18 is 
shown pertaining the SMA activity while on the right 
the component number 15, pertaining activity in the 
ipsilateral and controlateral primary motor areas, is 
shown. 
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a)  

b)  
 

Figure 6: dendrogram obtained from clustering of the 
pairwise mutual distances between extracted ICs from 
real data. Figure a refers to 20 ICs model order, while 
figure b refers to 30 ICs model order. 

 
Discussion 
 

The method proposed aims to study the residual 
dependencies between the ICs in order to reveal some 
informative structure in the data as well as face the 
ambiguities inherent the model order indeterminacy. A 
similar approach was developed in [13] and used within 
an ICA framework: the differences regard the choice of 
the distance measure, the algorithm employed to 
estimate the independent components, that exploits the 
minimization of the mutual information  [14] and the 
application field. In this work we have applied the 
fastICA algorithm used efficiently for analysis of fMRI 
data [15]. The proximity measure used for clustering, 
given by equation 3, was estimated using a rank 
ordering operation: this operation allows to facilitate the 
computation of mutual information transforming the 
distributions of the components in uniform distributions. 
Moreover, since we are interested in similarities 
between two distributions, this approach allows the 
results not to be blurred by the individual distributions 
of the components: in fact, the correlations between two 
components are preserved, as the validity of the results. 

The evaluation of the ICA results has been necessary 
in order to interpret the results of the hierarchical 
clustering approach. The interesting ICs were found by 
looking at the correlation coefficient of the 
corresponding time course and the modulating time 
course of each activation region: this value was not 
given because it was not our purpose to focus on ICA 
performances. The area under the ROC curve was 
evaluated to classify the ICs in order to determine the 
ROI they are related to: as we have seen some 
components are related to both ROIs, as in the case of 
time delay equal to 1.25 seconds with mild/high noise 

levels (see table 1). This is may be due to limitations of  
ICA algorithm in this case: however as is possible to see 
from dendrogram analysis, the clustering operation 
associate, successfully, these components to the same 
cluster. 

The fact that the same region of activation can be 
separated in different components may be due to 
problems arising from model order inaccuracy. In this 
case the clustering approach proposed can be used to 
overcome this ambiguity: in fact, on the simulated 
datasets, the clustering algorithm succeeded in grouping 
together components belonging to the same region of 
activation found by ICA. 

The low values of the AUC parameter may be due to 
the fact that the same activated region is often 
decomposed in different ICs: combining the 
components merged by the clustering algorithm may be 
a way to reconstruct correctly the activated regions and 
improve accuracy performances. 

These results may be used as a guideline for real 
data application even if further modelling and analysis 
are required: the real data example proposed here has 
been analyzed with larger model orders than those used 
in simulations since lower orders failed in revealing the 
correct activated regions. Simulations on null data, as 
echo planar images acquired in resting conditions, with 
superimposed simulated activations, may be also used. 

The clustering algorithm proved to be able to find 
similarities between CTR IC maps, independently from 
the model order used: some components were found to 
merge with the CTR ones, but it was not possible to 
identify their origin. Further analysis on real datasets is 
needed in order to ascertain the validity of the proposed 
method in fMRI exploratory approaches. One 
unresolved issue is the choice of a hierarchy level that 
may distinguish interesting and homogeneous groups 
from each other. 
 
Conclusions 
 

A hierarchical clustering algorithm has been 
proposed in order to classify the spatially independent 
components obtained by ICA. The hypothesis of 
statistical independence of the extracted components is 
only approximated by the resulting ICs: the residual 
dependencies among the components may reveal some 
informative structure in the data. The clustering 
algorithm merges the components depending upon a 
similarity measure derived from the pairwise mutual 
information among the ICs. This operation has 
demonstrated successful in simulated dataset in merging 
together IC maps related to the same activated region 
found by ICA. Preliminary results on real data seem to 
indicate that the method merges together ICs belonging 
to the same phenomenon and encourage further 
analyses. 
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