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Abstract: Vocal fold paralysis, polyps, 
cordectomisation or other dysfunction, may alter 
regular speech production and cause more efforts to 
be used in speaking than for healthy people. In this 
paper, we deal with the problem of enhancing voice 
quality for people suffering from dysphonia, which is 
mainly due to air flow turbulence in the vocal tract, 
coming from irregular vocal folds vibration. We 
present a new approach for reducing voice 
hoarseness in pathological voices, often referred to as 
noise. Thanks to its robustness against noise, low-
order singular value decomposition (SVD) of suitable 
data matrices is used for voice enhancement. An 
optimised adaptive comb filter (OACF) is applied 
first, to reduce noise between harmonics. Objective 
voice quality measures are proposed, to test results 
on real pathological data.  
 
Keywords: Voice enhancement, SVD, Comb filter, 
Noise, pitch, spectrogram. 
 
Introduction 

 
The need for enhancing speech signals arises in many 
situations, especially in speech communication settings, 
in which the speech either originates from some noisy 
source or is affected by the noise at the receiving end 
[1], [3], [4]. At present, few results are available in the 
biomedical field, aiming at reducing voice hoarseness. 
However, this problem is of great concern, for 
rehabilitation and from the assistive technology point of 
view. Commonly, surgical and/or pharmacological 
treatments allow restoring voice quality, with patient’s 
recovering to an acceptable or even excellent level. 
However, sometimes patients can only partly recover, 
with heavy implications on their quality of life. 
The aim of the proposed method is to improve time and 
spectral characteristics of degraded voice signals. The 
method performs optimised adaptive comb filtering 
(OACF) on data windows of varying length, obtained 
with a new robust adaptive pitch estimation technique. 
OACF successfully reduces noise as evaluated by an 
adaptive implementation of the Normalised Noise 
Energy technique (ANNE). This step is followed by 
Singular value Decomposition (SVD) of matrices whose 

entries come from sampled speech data frames, properly 
organised. The noise component is removed from the 
signal and the filtered signal is reconstructed along the 
directions spanned by the eigenvectors associated with 
the signal subspace eigenvalues only, thus giving 
enhanced voice quality. New quality indexes have been 
defined, and used as objective measures for assessing 
enhancement of voice. 
Real data (sustained vowels, words and sentences) 
coming from dysphonic subjects were filtered with the 
proposed approach, with enhanced results in almost all 
cases.  
 
Method 

 
Optimised Adaptive Comb Filter 
 
An optimised adaptive comb filter (OACF) is applied 
first. The essence of comb filtering is to build a filter 
that passes the harmonics of the speech signal y(n), 
while rejecting noise frequency components between 
the harmonics [1], according to: 
 

∑
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Where T0i is adaptively estimated according to the two 
steps described below, in sect.2.1.1 - 2.1.2. The filter 
that has been used in this paper has a Hamming window 
shape, which is obtained from the following equation 
(with K=3): 
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Ideally, spacing between each “tooth” in the comb filter 
should correspond to F0 in Hz, which, however,  is often 
highly unstable in pathological voices. Hence, the comb 
filter must adapt to fast pitch variations. The filter is 
optimised here, as it relies on a robust adaptive pitch 
estimator allowing a varying window length for the 
filter, linked to varying pitch. To this aim, a two-step 
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 pitch detection algorithm is proposed. The choice of the 
techniques adopted in each step results from a 
comparative analysis of pitch extraction methods [2]. 
 
 First Pitch Estimate 
 
Simple Inverse Filter Tracking (SIFT) is applied first, 
on signal time windows of short but fixed length 
M=3Fs/Fmin, where Fs is the signal sampling frequency, 
and Fmin is the minimum allowed F0 value for the signal 
under consideration (here: Fmin=50Hz, corresponding to 
very low male pitch). Short time window is required, 
due to high non-stationarity of the signals under study. 
To create an IF, a low-order Linear Prediction (LP) is 
usually selected (order p≈4), since no more than two 
formants are expected in the low-passed signal frame 
[3]. For highly degraded signals as those under study, an 
adaptive choice for the filter order is proposed here, 
based on SVD of matrices whose entries come from 
sampled speech data frames [4], [5]. SVD requires 
selecting the "size" p of the signal subspace, i.e. the 
minimum number of eigenvectors spanning the clean 
data. To this aim, a variable threshold is defined, based 
on the Dynamic Mean Evaluation (DME) criterion, 
which relies on the geometric distance among “large” and 
“small” singular values [2]. The DME is applied to the 
decreasing sequence of singular values σ2

i.  Typically, 
with DME, 2 ≤ p ≤ 6 during the utterance, due to 
changing signal characteristics: the larger the estimated 
p, the more varying the signal. From this step, a first 
raw F0 tracking is obtained, along with its range of 
variation [Fl, Fh].   
 
Second Pitch Estimate 
 
The second step gives a more accurate F0 estimation and 
allows defining the optimum varying pitch period for 
OACF. F0 is now adaptively estimated in the frequency 
range [Fl, Fh], obtained in step 2.1.1. Estimation is 
performed on short time windows of varying length, 
corresponding to three pitch periods, inversely 
proportional to previously estimated local F0, with 50% 
overlapping. The signal is band-pass filtered (50Hz-
400Hz) with a proper Continuous Wavelet Transform 
(Mexican hat) and its periodicity is extracted by means 
of the Average Magnitude Difference Function (AMDF) 
approach, as non-stationarity and amplitude modulation 
of the signals under study often cause misestimation of 
the true signal periodicity with autocorrelation [2]. The 
procedure gives a sequence of F0i  pitch values, and the 
corresponding starting points in the time-domain T0i, 
used for  OACF (eqns. (1), (2)). 
 
Singular Value Decomposition 
 
SVD is a numerically reliable and robust means for 
estimating the space of clean data (signal subspace) 
from the white noise corrupted data, and is thus 
particularly suited for speech denoising [4],[5]. It 
performs the factorisation: A=UΣVT, T denoting 

transpose, for a matrix A, generally non-square. Matrix 
Σ is block-diagonal, with the (1,1) block given by: 
Σp=diag(σ1, σ2, …, σp), σi being the i-th singular value 
of A. The singular values σi display the distance of 
matrix A from low-rank matrices and together with the 
singular vectors U and V, they can be used to construct 
optimal low-rank approximants, Ap, where p is the size 
of the low-rank approximation. This considerably 
improves the quality of voice, removing a major source 
of sensitivity to noise. A-matrix structure is Toepltiz-
like, and arises from the classical forward-backward 
approach to the estimation of linear prediction (LP) 
polynomial coefficients. Its entries are obtained from 
subsequent data frames, whose length is adaptively 
obtained according to varying pitch period, as described 
in sect.2.1. 
The proposed SVD-filtering method is based on the 
following steps [6]: 

• Compute the SVD of ∑
=

σ=Σ=
r

1k

T
kkk

T vuVUA , 

A∈ℜ2(M-R)xR, r=min(R,2(M-R))≥p. uk and vk are 
respectively the left and right singular vectors 
associated with the eigenvalue σk. R is choseh in the 
range: Fs≤R≤M/2, Fs = sampling frequency (kHz) and 
M = data frame length (number of points).   

• Retain the p dominant singular values and the 

corresponding singular vectors, i.e.: ∑
=

=
p

1k

T
kkkp vuσA� . 

pA�  is the p-rank approximation of A and corresponds 
to Σ as far as the first p eigenvalues are concerned, 
and is zero elsewhere. 

• From pA� , the filtered signal frame is reconstructed. 
The subsequent M-points speech frame is analysed. 
Filtered frames are put back together sequentially, 
appending the new frame to previously filtered frames.  

As it was found that the higher the order p, the worse 
the filter, a fixed low-order filter was selected, 
corresponding to p=2. A normalization step of the signal 
amplitude dynamics allows restoring the output level, 
lowered than the input one, due to scale factors in the 
filtering algorithm. Moreover, “click-noise” at the 
output, due to the filtering chain, was reduced with a 
linear interpolation across n=5 samples of the filtered 
signal, centred on the last sample of each frame. Despite 
its simplicity, the SVD approach was found effective in 
increasing voice quality [6], [7]. 

 
Noise estimation 

 
An adaptive noise estimation technique is implemented, 
that allows tracking varying noise level during 
phonation. This in fact could be of help for the 
physician, in order to evaluate the effort made by the 
patient during the vocal emission. The ANNE (Adaptive 
Normalised Noise Energy), relies on the NNE comb 
filtering approach [8], optimised in order to deal with 
varying signal characteristics, as it is based on the two-
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 step pitch detection algorithm described in sect. 2.1.1-
2.1.2. ANNE is defined as:  
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with: NL=⎡NfLT⎤, NH=⎡NfHT⎤, N = number of DFT 
points, L = number of frames in the analysis interval, fL 
and fH = lowest and highest frequencies of the frequency 
band of interest, ⎢ mW~ (k) ⎢2 = estimate of the unknown 
noise energy ⎢Wm(k)⎢2 , ⎢Xm(k) ⎢2 = signal energy, T = 
sampling period. In the harmonic dip regions Di (i.e. 
where the harmonics have no component) ⎢ mW~ (k)⎢2 is 
given by the signal energy ⎢Xm(k)⎢2, while in the 
harmonics peak regions Pi it can be obtained by 
interpolating between the values of ⎢ mW~ (k) ⎢2 in the 
dip regions Di and Di+1 on both sides of the peak region 
Pi . Hence, large negative ANNE values correspond to 
good voice quality, while values close to zero reflect the 
presence of noise. Due to their close relationship, the 
OACF was shown to perform a stronger noise reduction 
with respect to SVD, as far as ANNE is concerned, and 
is thus applied as pre-filtering step. 
 
Objective Quality Indexes 
 
Three objective indexes are defined¸ closely related to 
the signal characteristics. A frequency threshold value 
fth=4kHz is defined, to separate the “harmonics” range 
from the “noise” one. It is based on the usual range for 
voiced sounds (first four formants) in adults [8], [9], as 
well as on experimental results obtained from threshold 
tuning in a dataset of voiced and unvoiced sounds. The 
subscript “non-filt” refers to the original signal, while 
“filt” refers to the denoised signal: 
 

)4(
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10log10lowPSD
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measures the ratio of the PSDs evaluated on the 
“harmonic range”; 
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is the ratio of the PSDs, evaluated on the “noise range”. 
A good denoising procedure should give PSDlow values 
near to zero (no loss of harmonic power), but high 
PSDhigh values (loss of power due to noise). Finally, a 
measure of the denoising effectiveness (quality 
enhancement ratio, QER) is defined as: 
 
QER is thus the ratio between the signal energy and that 
of the measured noise. QER>0 corresponds to good 
denoising.  

 
Results 
 
A set of about 20 voice signals (word /aiuole/) coming 
from adult male  patients were analysed with the 
proposed approach. All patients underwent surgical 
removal of T1A glottic cancer, by means of laser or 
lancet technique. Perceptual evaluation with GRBAS 
scale showed good recovering, however, residual 
hoarseness was found in most of them. By applying  
OACF followed by SVD, voice quality results enhanced 
in most cases. The following figures are relative to one 
case (lancet). Figs.1-3 show the signal (upper plot), the 
two-step F0 estimation (middle plot, black crosses for 
the first and the second estimate, respectively) along 
with its mean value and standard deviation (Std) the 
adaptive varying window length (middle plot, black 
stars), and the ANNE estimate (lowest plot, black 
crosses) with its mean value across the whole voiced 
emission. 
Fig.1 is relative to the signal before denoising. F0 is 
highly oscillating, with huge Std, as shown by unstable 
black crosses. Also, ANNE has almost low negative 
values, with a mean value of about -11.8dB. 
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Figure 1: Non-filtered signal: two-step F0 estimation, 
adaptive window length, ANNE 
 
Figs.2 and 3 show the enhancement in F0 stability 
(92.7Hz with low Std), and noise reduction after OACF 
and OACF+SVD: notice that after OACF the mean 
NNE value has decreased to about -18dB, with a small 
increase (-16.8dB) after OACF+SVD.  
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Figure 2:  OACF-filtered signal: two-step F0 estimation, 
adaptive window length, ANNE 
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Figure 3: OACF+SVD-filtered signal: two-step F0 
estimation, adaptive window length, ANNE 
 
Figs. 4-5 show the PSD plot and quality indexes (4)-(6) 
as obtained after OACF and OACF+SVD respectively. 
It is evident that OACF cannot remove enough noise 
energy in the spectrum, while after SVD a noticeable 
reduction is obtained. Specifically, for OACF, PSDlow=-
0.22, PSDhigh=2.19, QER=-2.8 indicate slight noise 
removal in the high frequency region, and even a small 
increase of noise energy in the spectrum. Strong 
denoising is obtained after SVD, with PSDlow=-1.84, 
PSDhigh=17.2, QER=4.3. Notice that with SVD only, 
worse results are obtained. 
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Figure 4: Non-filtered and OACF-filtered PSD plot 
along with new quality indexes 
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Figure 5: Non-filtered and OACF+SVD-filtered PSD 
plot along with new quality indexes 
 
Finally, spectrograms in figs.7-8 clearly show noise 
reduction and harmonics enhancement after OACF, and 
especially OACF+SVD, as compared to the non-filtered 
signal spectrogram in fig.6 (the darker the grey level, 
the lower the spectral energy). Notice also that formants 
are preserved after denoising. 
Summing up, first results show that OACF is well suited 
for noise removal between harmonics, while SVD is 
effective in filtering out high frequency noise. 
Combining the two approaches has given enhanced 
results in most cases. 
 
Final remarks 

 
A denoising procedure is proposed, based on an 
optimised ACF and low-order SVD decomposition of 
voice data. The procedure was found effective in 
increasing the quality of voice, while preserving the 
harmonic structure of the original signal. An automatic 
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 tool is provided, allowing robust pitch and noise 
estimation and strong noise reduction. This tool could 
be of help both for clinicians, in order to follow 
patient’s rehabilitation, after surgery or drug treatment, 
and for dysphonic subjects, for testing and enhancing 
their fluent speech quality by means of a simple and 
cheap mobile device.A first prototype was implemented 
on a DSP board, by means of properly optimised C and 
Assembler code. The global procedure will be optimised, 
towards the fulfilment of a mobile device for real-time 
speech analysis and denoising. 
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Figure 6: Signal spectrogram and formant tracking 
before denoising 
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Figure 7: Signal spectrogram after OACF denoising 
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Figure 8: Signal spectrogram after OACF+SVD 
denoising 
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