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Abstract: This study investigates seizure prediction 
performance and EEG dynamical response to 
electrical stimulation in an animal model that 
mimics human mesial temporal lobe epilepsy 
(MTLE). We performed an automated seizure 
warning algorithm (ASWA) on long-term 
continuous EEG recordings obtained from five 
freely moving rats with chronic limbic epilepsy 
(CLE). This algorithm is based on the detection of 
convergence of short-term maximum Lyapunov 
exponents (STLmax) among brain regions. The 
performance was evaluated with different warning 
horizons (WH) and was compared with those 
obtained from statistically derived naïve seizure 
warning schemes. The results demonstrate that 
ASWA performs significantly better than naïve 
warning schemes (p<0.01). We also investigated the 
responses of EEG dynamics to electrical stimulation 
in CLE rats. A single stimulas was delivered to 
hippocampus short after a seizure warning was 
issued by ASWA. Preliminary results suggest that 
the mechanism underlying the anticonvulsant effect 
of hippocampal stimulation may involve dynamical 
resetting. The ability to warn of impending seizures 
and intervene to modify the brain dynamics in this 
model provides an opportunity to develop and test 
novel closed-loop intervention techniques directed 
toward the prevention of impending seizures. 

Keywords⎯automated seizure warning, chronic 
limbic epilepsy model, hippocampal stimulation 
 
Introduction 
 

The epilepsies are a family of neurological 
disorders characterized by seizures which are transient, 
recurrent perturbations of normal brain function. As a 
chronic condition, epilepsy affects about 1% of the 
population in the United States [1]. Methods derived 
from the patterns of quantitative dynamical descriptors 

of electroencephalographic (EEG) signals have been 
used to demonstrate the existence of preictal transition 
in human temporal lobe epilepsy (TLE) [2-7]. Based 
on the detection of STLmax convergence among 
recording electrode sites before a seizure, we have 
developed several algorithms designed to monitor the 
spatiotemporal dynamics of the EEG signals and 
predict seizures [8-10]. Preliminary analyses of these 
algorithms indicate that they can predict seizures with 
at least 80% sensitivity and a false-prediction rate of 
approximately 0.125 per hour. The present study 
evaluates the application of an ASWA to a CLE rodent 
model. This seizure model is created by inducing 
prolonged seizures (status epilepticus) using electrical 
stimulation of the hippocampus [11]. After a period of 
several weeks to a month of recovery from the 
stimulation, the animals begin to have spontaneous 
seizures that continue for the rest of their lives [12]. 
This model has many of the features associated with 
human TLE including (1) similar electrophysiological 
correlates, (2) etiology, (3) pathological changes in the 
limbic system, and (4) seizure induced behavioral 
manifestations. In addition to these aforementioned 
characteristics, recent work suggests that this model 
shares many spatiotemporal characteristics of the EEG 
with human epilepsy [13-14]. These studies have 
reported preictal transitions that are similar to those 
observed in patients with epilepsy.  

The ultimate goal of this study was to use this 
animal model to investigate closed-loop control 
schemes that would apply a therapeutic intervention 
when a seizure is likely to happen. In the current study, 
we first investigated the seizure predictability in the 
CLE model by employing an ASWA that has been 
tested in human EEGs. We tested the hypothesis that 
the performance of ASWA in CLE rats is better than 
naïve warning schemes (periodic and random 
warning). By performing ASWA on-line in real-time, 
we further studied the responses of EEG dynamics to 
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electrical stimulation delivered to hippocampus when a 
seizure warning was issued. Results of these 
investigation could form a basis for the design of 
closed-loop control schemes that would apply a 
therapeutic intervention when a seizure is likely to 
happen. 
 
Materials and Methods 
 
A. Animal Preparation and EEG Acquisition 

Experiments were performed on two month old 
(250 g) adult male Harlan Sprague Dawley rats (n=5) 
weighing 210-265 g. Four 0.8 mm stainless steel 
screws (small parts) were placed in the skull to anchor 
the acrylic headset. Two were located 2 mm rostral to 
bregma and 2 mm laterally to either side of the 
midline. One was 3 mm caudal to bregma and 2 mm 
lateral to the midline. One of these served as a screw 
ground electrode. The last, which served as a screw 
reference electrode, was located 2 mm caudal to 
lambda and 2 mm to the right of midline. Holes were 
drilled to permit insertion of 2 stainless steel bipolar 
twist electrodes (1 mm tip separation) into the left and 
right ventral hippocampii for electrical stimulation and 
recording,  and 2 stainless steel monopolar recording 
electrodes in the bilateral frontal cortical hemispheres. 
Rats were allowed to recover for a week after surgery 
before further procedures were performed. 

The rats were electrically stimulated to induce 
seizures 1 week after surgery. The stimulation target 
was chosen by the technician based on behavioral 
response to stimulation and EEG afterdischarge 
patterns. Approximately 20-30 minutes after the 
stimulation, convulsive seizures (up to 1 min duration) 
were usually observed about every 10 min. At the end 
of the stimulus period, the EEG trace was observed for 
evidence of slow waves in all 4 monopolar traces. If 
this was not the case, the stimulus was re-applied for 
10 minute intervals on another 1-3 occasions until 
continual slow waves appeared after the stimulus was 
terminated. Only rats that were responsive to 
stimulation and went on to develop spontaneous 
seizures were included in the study. 

With successful seizure induction, the EEG 
continued to demonstrate < 5 Hz activity for 12-24 hrs 
and intermittent and spontaneous electrographic 
seizures (30 seconds - 1 minute in duration) for 2-4 hrs 
following an electrical stimulation session. Rats were 
observed for 12-24 hrs after stimulation for seizure 
activity, and food and water intake was monitored 
closely. Once their behavior stabilized, they were 
returned to their home room for 6 weeks while 
spontaneous seizures developed. 

Each animal was connected through a 6-channel  
commutator and shielded cable to the EEG recording 
system, which consists of an analog amplifier (Grass 
Telefactor-Model 10), a 12 bit A/D converter (National 
Instruments, Inc), and recording software 
(HARMONIE 5.2, Stellate Inc. Montreal), which was 
synchronized to a video unit for time-locked 

monitoring of behavioral changes. A detailed 
description of the recording setup used in this study 
can be found in [12]. Each channel was sampled at a 
uniform rate of 200 Hz and filtered using analog high 
and low pass filters at cutoff frequencies of 0.1 Hz and 
70 Hz, respectively. The recording system used a 4 
channel referential montage and was set to a 
continuous mode so that prolonged data sets containing 
ictal as well as interictal data could be collected for 
analysis. EEG dataset pre-processing included removal 
of baseline wander using a Butterworth filter. 

 
B. Description of Datasets 

Long term continuous EEG recordings from 5 CLE 
rats with a total of 48 spontaneous seizures were 
included in this study. We selected these rats based on 
duration of recordings (at least two weeks), and 
number of seizures (at least 5 seizures). The mean total 
duration of recordings was approximately 19 days and 
the mean seizure interval was a little over 2 days (~ 
49.7 hours). A summary of the test dataset is given in 
Table 1. Seizures were identified by review of 
technician logs, visual scanning of the recordings, and 
automated seizure detection algorithms. The seizures 
were confirmed and classified by a board-certified 
electroencephalographer who also made an 
independent determination of the time and anatomical 
location of electrographic seizure onsets. 

 
Table 1: Summary of EEG datasets 
 

Rat Duration of 
EEG 

recordings 
(days) 

Number 
of 

seizures
 

Range of Inter- 
seizure interval 

(hours) 

Mean 
Inter-
seizure 
interval 
(hours) 

R-1 14.3 7 3.54 ~ 115.6 52.3 
R-2 31.3 8 20.56 ~ 217.7 98.46 
R-3 15.7 10 2.82 ~ 74.3 30.23 
R-4 14.6 8 12.44 ~ 76.25 43.53 
R-5 19.1 15 2.98 ~ 186.37 23.77 

Total 95.0 48 2.82 ~ 217.70 49.7 
 
C. Automated Seizure Warning Algorithm (ASWA) 

Based on the spatiotemporal dynamics of EEG 
signals, ASWA involves the following steps: 
(1) Calculate STLmax: As EEG signals are collected, 
a STLmax estimation is performed every 10.24 second 
window in each channel, creating a new time series of 
STLmax profiles with a 10.24 sec time resolution. 
STLmax quantifies the observed local chaoticity of a 
dynamical system, and is closely related to the average 
rate at which information is produced or destroyed. 
The rationale for the use of STLmax is based on the 
hypothesis that the epileptic brain progresses into and 
out of order-disorder states according to the theory of 
phase transitions of nonlinear dynamical systems [15]. 
Detailed descriptions of the method for calculating 
STLmax from nonstationary signals have been 
published previously [16]. 
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(2) Select most critical channel groups: Based on the 
STLmax time profiles from all recording channels 
before and after the first available seizure, ASWA 
selects the most critical groups of EEG channels for 
prospective monitoring. The channel selection is 
performed automatically, based on a similarity index of 
STLmax profiles called T-index (derived from the 
paired T-statistic).  The critical groups of electrode 
channels are defined as the channel groups that 
maximize the quantity )()( preictalTpostictalT − , 
where T(postictal) is the average T-index in the 10 
minute window following the offset of the first seizure 
and T(preictal) is from the 10 minute window 
preceding the first onset. The selection of 10-minute 
intervals before and after the seizure in this process 
was based on our previous studies on dynamical 
resetting of epileptic seizures [17]. The average T-
index values of these groups are monitored forward in 
time (moving window of 10.24 seconds at a time), 
generating T-index curves over time. 
(3) Detect convergence of STLmax – Entrainment 
transition: An entrainment transition is detected when 
the average T-index curve for any of the critical groups 
falls below a dynamically adapted critical threshold. 
The adaptive threshold includes a “dead-zone” with an 
upper threshold UT and a lower threshold LT. An 
entrainment transition is detected if an average T-index 
curve is initially above UT and then gradually (at least 
30 minutes of traveling time) drops below LT. Once an 
entrainment transition is detected, the algorithm will 
search for a new UT to be used for detection of the 
next transition. 
(4) Issue a warning: After an entrainment transition is 
detected, the algorithm will determine whether a 
seizure warning should be issued. In this algorithm, if a 
transition is detected within the warning horizon from 
the previous warning, the transition is considered as 
part of a cluster of transitions and a new warning is not 
issued. Thus, a seizure warning defines mathematically 
the beginning of a new dynamical EEG state called the 
preictal transition.  
 
D. Statistical Evaluation of Seizure Predictability 

In this study, we compared the performance of the 
ASWA with statistically based seizure warning 
schemes that do not utilize information from the EEG 
signals (naïve seizure warning schemes). We utilized a 
periodic and a random prediction scheme [18]. The 
periodic and random prediction schemes are simple 
and intuitive. The periodic scheme issues a warning 
with a fixed time interval. The random scheme warns 
of an impending event with a random interval that 
follows an exponential distribution with a fixed mean.   

For each of the test warning algorithms (ASWA, 
periodic and random), we evaluated seizure 
predictability using six different warning horizons 
(WH = 1 ~ 6 hours), defined as the period following a 
warning, during which a seizure is expected to occur. 
After the issue of a warning, it is considered as correct 
if the event occurs within the WH. If no event occurs 

within the window of the WH, the warning is classified 
as a false warning. The merit of a prediction scheme 
for a given prediction parameter is then evaluated by 
its probability of correctly predicting the next event 
(sensitivity) and its false warning rate (FWR) 
(specificity). The unit of FPR used here is per hour and 
thus FWR is estimated as the total number of false 
predictions divided by total number of hours of EEG 
analyzed. An ideal warning scheme should have 
sensitivity 1, and FWR 0. 

The next step is to estimate the warning receiver 
operating characteristic (WROC) curve. The parameter 
used for the construction of each WROC curve were: 
the distance D between UT and LT (ASWA scheme), 
the interval T (periodic scheme), and the mean of the 
underlying exponential distribution λ (random 
scheme). For each warning algorithm, the sensitivity 
and FWR decreased when the value of its 
corresponding parameter increased, as expected. For 
the random scheme, since it essentially is a random 
process, each point in WROC curve (i.e., for each 
value of λ) was estimated as the mean sensitivity and 
mean FWR from 100 Monte Carlo simulations. 

In some cases, the WROC curve may not be 
smooth and the superiority of one warning scheme over 
the other is difficult to establish. Usually, WROC 
curves are globally summarized by one value, called 
the area above (or under) the curve. Since the 
horizontal axis FWR of a WROC curve is not bounded, 
the area above the curve (AAC), given by 

∫
∞

−=
0

)](1[ dxxfAAC  (1) 
is the most appropriate measure, where y = f(x), with x 
and y being the FWR and sensitivity respectively. 
Smaller AAC indicates better seizure warning 
performance. In this seizure warning application, since 
it is less important to evaluate the performance when 
sensitivity is low, we have estimated AAC with seizure 
warning sensitivity at least 50%. 
 
E. Responses of EEG Dynamics to Electrical 
Stimulation 

For this study, each rat first underwent a procedure 
for determining its afterdischarge (AD) threshold. 
Biphasic square wave pulse trains (AM Systems Inc.) 
were delivered using bipolar electrodes in the 
hippocampus. With the following stimulation 
parameters constant, (1) frequency = 125 Hz, (2) train 
duration =10 seconds, and (3) pulse width = 400 
µseconds, the output current intensity was increased 
from an initial low value in small increments (10 ~ 20 
µA) until ADs were observed in the simultaneously 
recorded EEG.  

The study was conducted during the interictal state 
to study the effects of varying intensity on EEG 
morphology as well as dynamics. Output current 
intensities of 50, 75, 100, 125 and 150 µA were used 
and remained below AD threshold in all experiments. 
High frequency stimulation was chosen because of 
reported anticonvulsive effects with hippocampal and 
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amygdalohippocampal stimulation in human subjects 
with refractory temporal lobe epilepsy [19-20].  

An ASWA ran in parallel with the EEG data 
acquisition on a separate PC that computed and plotted 
dynamical and statistical values in real-time. Once the 
animal was connected to the ASWA, a training session 
was used to choose the appropriate electrode 
combinations to monitor and issue warnings. In this 
pilot study, upper and lower T-index thresholds were 
fixed at 5 and 2.662 respectively and a warning was 
issued when any of the monitored electrode groups 
showed an entrainment transition. 

After a warning was issued, the system was 
switched from the recording mode to stimulation mode, 
and a stimulus train was delivered through a 
hippocampal bipolar electrode. The following 
parameter setting was chosen for the initial set of trials: 
output current intensity = 100 µA; frequency = 125 Hz; 
pulse width = 400 µseconds and duration = 10 seconds. 
After the stimulus was delivered, the T-index curves 
were monitored to check the responses of EEG 
dynmcias.  
 
Results 
 
A. Seizure Predictability 

The WROC curves for each animal were estimated 
from the three warning schemes using 6 different 
warning horizons. Figure 1 illustrates the WROC 
curves from the first rat. Closer inspection of these 
curves shows a consistent superior performance of the 
ASWA (red line) when compared to the two null 
seizure warning schemes (blue and green line), with 
the lower FWR values for almost the entire range of 
sensitivities. 

A summary of seizure warning performance (FWR 
with sensitivity at least 80%) as a function of SWH is 
given in Table 2. This performance characterizes the 
overall (all rats) FWR and seizure warning time (the 
average of the period from the true warnings issued by 
the algorithm up to the onset of the subsequent 
seizures) for ASWA when a sensitivity of 80% or 
better was required for each rat. With SWH = 1 hour, 
an FWR of 0.267 per hour (approximately 1 false 
prediction per 3.8 hours) with the mean seizure 
warning time 30.7 minutes was observed, while the 
corresponding FWR for periodic and for random 
warning scheme are 0.777 and 0.827 per hour, 
respectively. The FWR decreases when the SWH 
increases. With SWH = 3 hours, ASWA performed an 
FWR of 0.116 per hour (approximately 1 false 
prediction per 8.6 hours) with the mean seizure 
warning time 69.5 minutes, while the corresponding 
FWRs for periodic and for random warning schemes 
are 0.242 and 0.265 per hour, respectively. 

 

 
 

Figure 1: Estimated SWROC curves derived from 
recordings in the first rat (R-1) for ASWA and two null 
seizure warning schemes: red line = ASWA; blue line 
= periodic warning method, and green line = random 
warning method. The warning horizons applied are 
from 1 to 6 hours. SWROC curves were smoothed by 
regression method. 
 
Table 2: Evaluation of overall warning performance of 
the three test algorithms when sensitivity is set larger 
than 80% per rat (Sensitivity and Mean Prediction 
Time columns are from ASWA. Periodic and Random 
schemes have the similar outcomes for these two 
characteristics, but with much higher FWRs). 

 
WH 

(hrs.)
Sensitivity FWR/hr

(ASWA)
Mean 

Prediction 
Time (mins.) 

FWP/hr
(Periodic)

FWR/hr 
(Random)

1 37/43 = 86.1% 0.267/hr 30.7 (± 18.4) 0.777/hr 0.827/hr 

2 37/43 = 86.1% 0.164/hr 54.9 (± 37.7) 0.344/hr 0.402/hr 

3 37/43 = 86.1% 0.116/hr 69.5 (± 47.1) 0.242/hr 0.265/hr 

4 37/43 = 86.1% 0.080/hr 108.5 (± 60.2) 0.171/hr 0.201/hr 

5 37/43 = 86.1% 0.076/hr 133.4 (± 84.6) 0.130/hr 0.161/hr 

6 37/43 = 86.1% 0.057/hr 176.9 (± 96.6) 0.107/hr 0.134/hr 
 

For the purpose of estimating predictability power, 
for each animal, each WROC curve was translated into 
the performance index AAC. The overall indices are 
shown in Figure 2. Corresponding to the above 
observations, the performance indices obtained from 
ASWA were smaller than those from the two null 
seizure warning schemes in each of the six SWHs. 
Statistical tests also revealed that, for each of the 
WH’s, the AAC for the ATSWA was significantly less 
than that from each of the two naïve warning schemes 
(p < 0.01). 

 
B. EEG Dynamical Responses to Electrical Stimulation 

Stimulation exhibited no discernable effects on 
STLmax values when entrainment was not observed. 
Stimulation following a dynamical entrainment was 
found to reset the T-index values and delay the 
occurrences of impending seizures by a mean of 203.7 
(± 89.1) minutes (Figures 3 and 4). In instances where 
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an entrainment was not reset by stimulation, a seizure 
occurred within 30 minutes. The mean inter-seizure 
interval was 2.7±1 hrs during no stimulation and was 
7.2±1.3 hrs during post-entrainment stimulation. 
Stimulations within 10 minutes of the entrainment 
appeared to be more effective than longer wait periods 
in their ability to cause dynamical resetting. 

 

 
 

Figure 2: Overall performance index (AAC) from 
ASWA and two naïve warning schemes with respect to 
different seizure warning horizons. 
 

 
 

Figure 3: Snapshot of the automated seizure warning 
system showing examples of stimulation of 
hippocampus after a warning. Vertical red and blue 
lines indicate ‘seizure warning’ and ‘stimulation’ times 
respectively. Note the resetting (rise in T-index) after 
the stimulation. 
 
Discussion 
 

In the present study, we evaluated an EEG-based 
warning algorithm (ASWA) on 5 CLE rats with long-
term (mean duration 456 hours continuous EEG 
recordings) which included extended seizure-free 
periods and multiple seizures (see Table 1). The use of 
the entire continuous EEG recording in each rat 
eliminated the potential for bias that could occur when 
an investigator selects epochs for analysis. However, 

the performance needs to be validated using a larger 
cohort of animals. 

 

 
 

Figure 4: Seizure distributions before and after a 
stimulus block. Note the change in inter-seizure 
interval during the stimulus block, compared to the 
pre-stimulus and post-stimulus blocks. 
 

Similar to Aschenbrenner-Scheibe et al’s [18] 
approach, the evaluation was based on the comparisons 
with the statistical periodic and random warning 
schemes, with respect to a characteristic of seizure 
warning ROC curves (area above curve, AAC). WROC 
curves describe the performance (with respect to 
sensitivity and false warning rates) over a range of a 
parameter, and AAC quantifies the overall warning 
performance. The results from 5 CLE rats 
demonstrated that ASWA algorithm significantly 
(p<0.05) outperformed each of the two statistical naïve 
warning schemes. 

The warning performance depends upon the length 
of the warning horizon (WH). Shortening the WH 
reduces the sensitivity and increases the false warning 
rate of an algorithm, while lengthening SWH increases 
sensitivity and reduces false positive rates. In this 
study, we evaluated seizure warning performance with 
WHs of 1 to 6 hours. The analyses revealed that the 
performance of ATSWA is superior to the naïve 
warning schemes even when the warnings of 
impending seizures are more accurate in time (smaller 
WH). The value of WH will depend upon the clinical 
application. 
 
Conclusion 
 

These results indicate that it is possible to warn of 
an impending seizure in the rodent CLE model. They 
also suggest that the dynamics governing the transition 
from interictal state to the seizure state are similar to 
those observed in human temporal lobe epilepsy. In 
addition, preliminary results from stimulation studies 
suggest that the mechanism underlying the 
anticonvulsant effect of hippocampal stimulation may 
involve dynamical resetting. The ability to warn of 
impending seizures and intervene to modify the brain 
dynamics in this model provide an opportunity for 
developing and testing novel closed-loop intervention 
techniques directed toward the prevention of 
impending seizures. 
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