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Abstract: Finite mixture models (FMMs) are an indis-
pensable tool for unsupervised classification in brain
imaging. Fitting a FMM to the data leads to a com-
plex optimization problem. This optimization prob-
lem is difficult to solve with standard local optimiza-
tion methods (e.g. by the expectation maximization
(EM) algorithm) if a good initialization is not avail-
able. In this paper, we propose a new global opti-
mization algorithm for the FMM parameter estima-
tion that is based on the real coded genetic algorithms.
Our specific contributions are two-fold: 1) We pro-
pose to use blended crossover in order to reduce the
premature convergence problem to its minimum. 2)
We introduce a completely new permutation opera-
tor specifically meant for the FMM parameter estima-
tion. We demonstrate the good behavior of our algo-
rithm compared to the EM-algorithm and a standard
real coded genetic algorithm with the tissue classifica-
tion task within the magnetic resonance brain imag-
ing. Phantom images as well as real three dimensional
image data with pathology are considered. The tissue
classification results by our method are shown to be
consistently more reliable and accurate than with the
competing parameter estimation methods.

Introduction

Finite mixture models (FMMs) are weighted sums of rel-
atively simple parametric probability density functions
(pdf)s called component densities. A component density
models the probability of the data from a certain class in
an unsupervised classification problem. Then, the corre-
sponding weighting factor in the FMM - called the mixing
parameter - models the prior probability of that class. A
sound, statistically based method for unsupervised clas-
sification involves minimizing the discrepancy between
observed data and the FMM with respect to the unknown
parameter values. This involves solving a complex op-
timization problem. The initializations for standard lo-
cal algorithms have to be well selected for the parameter
estimates to be good. In Fig. 1, the effect of a small
change in the initialization for the expectation maximiza-
tion (EM) algorithm [1] is demonstrated in the case of

the tissue classification of magnetic resonance (MR) im-
ages. If the initialization for the EM algorithm was gen-
erated relying on stereotaxic registration and a brain at-
las [2], such a small change could be caused by pathol-
ogy or failed stereotaxic registration. To avoid the ini-
tialization problem, we propose a new method based on
real coded genetic algorithms (RCGAs) to solve the opti-
mization problem globally. We use tissue classification in
MRI to demonstrate desirable features of our algorithm.
We have chosen this application because it is important
and well known. However, we emphasize that our algo-
rithm is meant as a general tool for FMM fitting problems
in brain imaging and it is not limited to the tissue classi-
fication application.

Previous approaches to the global FMM optimization
within medical imaging include [3, 4]. In [3] tissue quan-
tification within MRI was considered by optimizing the
FMM parameters using the tree annealing algorithm [5].
However, the time-complexity of tree-annealing grows
very fast with the increased number of variables in the
problem. In [4], RCGAs were considered for tissue clas-
sification within T1 weighted MR brain images. How-
ever, as the authors applied the flat crossover operator
that is known to cause premature convergence [6], their
approach suffered local optima problems similar to the
EM algorithm. The approach has been generalized to ac-
count for the partial volume effect [7], however, this gen-
eralization does not remove the local optimum problem
associated with the flat crossover.

In this paper, we introduce a new RCGA for the fitting
of FMMs within medical imaging. Our contributions are
two-fold. Firstly, we apply a blended crossover (BLX)
to avoid the premature convergence [8]. Secondly, we
propose a new permutation operator designed to reduce
the size of the search space by using a priori knowledge
about the optimization problem. We compare our algo-
rithm to the EM-algorithm and a RCGA similar to that in
[4] using simulated and real MRI data. Our algorithm is
shown to be much less sensitive to its initialization than
those methods.
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Figure 1: The local maxima problem with EM based parameter estimation. From left: two different initializations com-
pared to the image histogram, a central axial slice of the skull stripped and non-intensity corrected [9] MR image, the
tissue classification from the initialization 1, and the tissue classification from the initialization 2.

Mixture models, maximum likelihood and classifica-
tion

General formulation

Observed image intensities are denoted by x; € R,i =
1,...,N. All of these intensities come from one of the
K classes - here modeling intensities from different tis-
sue types. Intensities drawn from the class k follow the
probability density function (pdf) fx(x,|6), k=1,...,K.
The parametric form of the pdf f; is known but the value
of the parameter vector ) is unknown. The pdfs f; are
called component densities. Each class has a prior prob-
ability py € [0, 1] expressing the fraction of the intensity
values following the density f;. These mixing parame-
ters satisfy Xszl pr = 1 and their values are initially un-
known. We denote the set of all parameter values by
®={p;,0;:i=1,...,K}. Combining the above facts,
the pdf for whole data is

x\@ Zpkfk x|9k (])

The objective is to estimate the parameters ® given the
data {x; : i =1,...,N}. Here, the estimation is based on
the maximum likelihood (ML) principle. To find the ML
estimate ©, an optimization problem has to be solved:

N
6 = argmax/(@®)= argmgxlognf(x,-|®)
i=1

N
= argmax I; log f(x:®). 2)

The log-likelihood /(®) will typically have several local
maxima. Once we have the estimate @, the image voxels
can be classified by the Bayes classifier based on their
intensity values. That is, the class @; of the voxel i is

; = arg ?llax }Pkfk(xz|9k) 3)

Image models

It is assumed that the brain has been extracted from the
images before the parameter estimation. We also assume

that the images have been corrected for the shading ar-
tifact. The images are assumed to be composed of two
kinds of voxels: Those that contain only one type of tis-
sue (pure voxels) and those that contain several types of
tissues (partial volume (PV) voxels). Following the mixel
model [10], it is assumed that the intensities of the pure
voxels follow the normal density

2
filsli, o) = ()R expl - U BT )
O

where L is the mean and sz > € > 0 is the variance of
the class k. Constraining the variances to be larger than a
small positive constant € is necessary because otherwise
likelihood function in (2) could grow without a limit [11].
The pure voxel classes are white matter (WM), gray mat-
ter (GM), and cerebro spinal fluid (CSF).

The pdfs for PV voxels are constructed by marginal-
ization [12]. We assume that there are no more than two
tissue types present in a voxel. The pdfs of PV voxels
are dependent on the parameters of the appropriate pure
voxel classes. For the mixture of tissue types j and i, the
pdf of the PV class is [13]

i = [Tenerel+(1—wrel

0
(x v + (1w
Z(WZGJZ +(1—w)20?)

X

&)

exp[—
These pdfs have to be evaluated using numerical in-
tegration. The PV classes are numbered with indices

K+1,...,K+K'. Hence, the FMM (1) can be re-written
as

K+K’

Y pufi(x16,6)),  (6)

k=K+1

f(x|®) = Zl’kfk (x[6k) +

where ZK+K pe=1,i,j<Kand ®= {p;,p;,07 : k=
l,....,K+ K’ i=1,...,K}. The PV classes are CSF/IGM
and WM/GM. The class background/CSF is not included
due to its negligible effect to the FMM in most cases.
PV classes have a large influence on the pdf of the
whole image. However, it is more desirable that all voxels
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are assigned to pure classes, because many further auto-
matic image analysis procedures expect such input (e.g.
[14]). Therefore, voxels initially classified to some PV
class are re-classified to a pure voxel class as described
in [13].

Genetic algorithm

Genetic algorithms (GAs) mimic the genetic processes of
biological organisms. Here, a GA is applied for maximiz-
ing the likelihood function with respect to the parameter
vector ®. The basic structure of our GA is presented in
Algorithm 1.

The populations consist of the parameter vectors for
the mixture models to be fitted to the data. The param-
eter vectors are represented by a vector of real numbers,
these kinds of GAs are said to be real coded. A survey
about RCGAs can be found in [6]. The fitness of an in-
dividual (a parameter vector) is the likelihood of the data
under the FMM model (6). The populations are initial-
ized by a set of parameter vectors drawn randomly from
the set of admissible parameter vectors. The applied pop-
ulation size is 100. The tournament selection with the
tournament size of 2 is applied. The algorithm is elitistic,
the individual with the best fitness score (the maximal
likelihood) always survives to the next generation. For
recombination, the BLX-0.5 operator is applied (subsec-
tion Blended crossover) with the crossover rate equal to 1.
After recombination, a novel permutation operator is ap-
plied (subsection Permutation operator). To keep the al-
gorithm simple and efficient, no mutation is applied. The
algorithm is terminated when the difference in the likeli-
hood score of the best individual and the mean likelihood
score of the population drops below a certain threshold.

Blended crossover

During the recombination, parameter vectors are com-
bined, two at a time, to produce a new offspring via
a crossover operator. We apply the BLX-a operator
with o = 0.5 [8]. If ®! = [ay,...,ay] € RY and @ =

[b1,...,by] € RM are the parents then the offspring is
0" =Ic|,...,cy|, where

ci=riai+ (1—r;)b;. @)
Scalars r;,i = 1,...,M, are random numbers drawn uni-

formly from the interval [—a,1+ a]. Each ¢; is a

Algorithm 1 Genetic Algorithm

t — 0, initialize a population P(r) of mixture models
evaluate P(¢) by computing the likelihood of each individual in it
while NOT termination condition do
te—t+1
select P(t) from P(t — 1)
recombine P(t)
permute © € P(t) when necessary
evaluate P(r)
end while

real scalar required to lie in the pre-specified inter-
val [c/in¢max] If after the recombination some ¢; ¢
[cmincmax] it is simply scaled to the nearest end point of
that interval. The constraints of the type 25_(:4-11(/ cj=1lare
handled by normalizing the values ¢j,j = 1,..., K+ K’
after the recombination by dividing them by the sum
ijlK' cj. (Here, we assumed that the mixing parameters
are the K + K’ first variates.)

When considering BLX-a operators, & = 0.5 is the
optimal choice in that it balances the relationship between
exploration (finding completely new solutions) and ex-
ploitation (improving already found solutions) [8, 6]. The
flat crossover, used in [4], is equal to the BLX-0 crossover
that overdoes the exploitation.

Permutation operator

We ensure that y; < up < ... < ug after the recombina-
tion. This is done by performing a certain permutation of
variables:

For all index pairs i, j where i < j < K do the follow-
ing: If y; < p; then swap u; and y;, Giz and sz, pi and
Dj-

This is the permutation operator. The operator in-
creases the efficiency of the GA based mixture modeling
due to the reduction of the size of the search space by
the operator. As can be seen from Eqgs. (1) and (6), if
a permutation is applied to the classes of the FMM, the
likelihood of the data remains the same whereas the in-
terpretation of the FMM changes dramatically. This kind
of identifiability problem is encountered because the in-
tensities of the pure voxel classes are all modeled with
the same parametric distribution. Therefore, without ex-
tra information, the FMM does not include a possibil-
ity to interpret the classes correctly. For example in T1-
weighted MR data, WM intensities is greater than GM
intensities on average. This kind of information can be
used to interpret the classes in a FMM and to reduce the
search space size via the permutation operator.

Fast implementation

The likelihood function in Eq. (2) needs to evaluated nu-
merous times during our GA. Hence, a notable speed up
can be achieved by using a well-known connection be-
tween maximum-likelihood and the Kullback-Leibler di-
vergence [15, 16]. The EM algorithm can be sped up
using a similar strategy [17].

The Kullback-Leibler divergence between the true pdf
g(+) and the parametric density f(-|®) is

g(x)
f(x[®)

Minimizing this divergence with respect to ® is equiva-
lent to the maximizing the likelihood (2) when N tends to

D(s().S(10) = [ slo)log L esdr. (®)
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Table 1: The misclassification rates with 50 random initializations and BrainWeb data. Left: The minimum, mean,
median, and maximum misclassification rates, resulting from random initializations, with T1-weighted image with 5 %
of noise are shown (the Bayes error is 6.0 %). Right: The mean misclassification rates from random initializations with
other types of data.
T1 with 5 % noise
min mean med max

pulse seq. T2 PD
noise % 3 7 3 5 7 3 5 7
BLX-GA | 6.1 6.2 62 6.5 BLX-GA | 41 9.6 | 88 152 208 | 16.1 283 36.1
FLAT-GA | 6.0 64 63 7.7 FLAT-GA | 42 98 | 125 162 204|190 29.8 372
EM 6.8 292 85 80.7 EM 189 239|413 425 425|609 636 60.1

infinity [15]. By replacing the integral in (8) by its trape-
zoidal approximation and g(-) by its Parzen estimate g(-)
[11], we get a faster way to obtain the ML estimate:

O=  argmineD(E().f(10): ()
DE().S(10) = M7 (a1 — 1)) log 25 (10)

In this paper, we select M = 100 and z; = min;x; +
W(maxim — min;x;). The Parzen estimates g(z;)
are computed using Gaussian window functions with the
standard deviation of (max;x; — min;x;)/M. This way a
speed up of the factor N/M can be obtained. For a typical

MR image this factor can be 10000.

Experiments and results

In this section, we compare the performance of our algo-
rithm (BLX-GA) to those of the EM algorithm and a GA
similar to [4] (FLAT-GA). With the EM-algorithm, the
PV classes were ignored. The FLAT-GA algorithm was
otherwise exactly the same as our BLX-GA algorithm ex-
cept that it used the flat crossover and it did not contain
the permutation operator. The classes were ordered af-
ter the parameter estimation with FLAT-GA and EM, so
that the improvements by BLX-GA were not due to the
identifiability problem.

In the first experiment, the algorithms were compared
using the simulated brain MRI images from the Brainweb
database by the Montreal Neurological Institute http:
//www.bic.mni.mcgill.ca/brainweb [18, 19].
We applied the images with no intensity non-uniformity,
with the resolution of 1 mm X Imm X lmm and with
the image size of 181 x 217 x 181. The images studied
were simulated with the T1 and T2 weighted as well as
proton density (PD) pulse sequences. The brain volume
was extracted based on the ground-truth. The quantitative
results were computed using the misclassification rate as
the criterion of success. Each algorithm was run 50 times
with a random initialization with each image and the mis-
classification rates resulting each of these runs were cal-
culated. The results are presented in Table 1. As can be
seen, both GAs were clearly more reliable than the EM-
algorithm, which typically achieved the average perfor-
mance of the GAs with only the best of the 50 random ini-
tializations. The EM-algorithm worked well only when
the initialization was well chosen, usually the results by
EM were completely useless. BLX-GA was clearly more

reliable than FLAT-GA as can be observed by the worst
performance with a T1-weighted scan (see the *'max’ col-
umn in Table 1). Also, the mean performance of BLX-
GA was consistently better than that of FLAT-GA, see
the right panel in Table 1. This difference was especially
clear with the T2-weighted and proton density images
with the lowest noise level.

In the second experiment, the repeatability of BLX-
GA using 3-D T1-weighted MR brain scans of healthy
and diseased (Alzheimer’s disease (AD), schizophrenia
and childhood schizophrenia) subjects were studied (Fig.
). Since the algorithm involves random components, the
repeatability of it is an important question. The images
were corrected from the intensity non-uniformity using
the N3-method [9]. The brain was extracted using the
Brain Surface Extractor [20] (healthy,schizophrenia), us-
ing the Brain Extraction Tool (childhood schizophrenia)
[21] or manually (AD). We estimated the FMM parame-
ters of the image data starting from a random initializa-
tion and tissue classified the image. This was repeated 50
times. Based on the 50 tissue classified images, the aver-
age classification was constructed by deciding the label of
each voxel by a majority vote, see Fig. . The percentages
of brain voxels classified differently compared to the av-
erage classification were 2.8 % (healthy subject), 5.3 %
(AD subject), 1.2 % (schizophrenic subject) and 2.9 %
(schizophrenic child). These percentages can be consid-
ered to be very low and they indicate good reproducibility
of the algorithm. With FLAT-GA, the percentages were
higher in most cases 6.0 % (normal), 3.4 % (AD), 3.4 %
(schizophrenic) and 3.8 % (schizophrenic child).

In addition to the reproducibility study, we computed
the resulting Kullback-Leibler divergences (10) for both
BLX-GA and FLAT-GA. These may be considered as
quantitative indicators of the success of the algorithms in
the optimization problem. The mean values of these are
given in Table 2. The Kullback-Leibler divergences pro-
duced by FLAT-GA were usually about ten times larger
than with BLX-GA. This indicates that the results by
BLX-GA were more correct than with FLAT-GA. Partic-
ularly with the AD subject, where the reproducibility of
FLAT-GA was better, BLX-GA achieved more accurate
parameter estimates as can be seen from Table 2.
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Normal

Schizophrenia

Child Schizophrenia

Figure 2: Top row: Axial cross-sections of the images applied in the reproducibility test. Bottom row: Axial cross-
sections of the average voxel classification that were decided by the majority vote from 50 random initializations for
BLX-GA parameter estimation. The 'normal’ image is the same as in our example in Fig. 1. The images are in the native

space.

Table 2: The average Kullback-Leibler divergences from
50 random initializations. Lower value means better re-
sult. The abbreviation SZ’ stands for schizophrenia.

Normal AD SZ Child SZ
BLX-GA | 0.0057 0.0077 0.0015 0.0063
FLAT-GA | 0.0879 0.0252 0.0512 0.0774
Discussion

We have presented a global algorithm for the FMM pa-
rameter estimation. The algorithm is based on the opti-
mization of the ML criterion using a novel GA. The al-
gorithm is not sensitive to its initialization which makes
it particularly useful in cases where a well-principled ini-
tialization for a local algorithm, such as the EM algo-
rithm, is not available. Moreover, the parameters for ar-
bitrary FMMs can be estimated, since the algorithm does
not require any assumptions about the parametric models
for the component densities. This is important in many
brain imaging applications where e.g. the influence of
the partial volume effect is large. The running time of
the algorithm varied from tens of seconds to five minutes
for the tissue classification of a 3-D MR image with a 3.0
Ghz PC.

Our GA contained two novel features compared to the
previous GA-based approaches for FMM optimization.
1) We applied the blended crossover which reduces the
problem of the premature convergence to its minimum. 2)
A completely new permutation operator was introduced.
These two contributions were demonstrated to improve
voxel classification results with 3-D MR brain images.
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