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Abstract:
The heartbeat fluctuations show fractal-like correla-
tions that are associated with highly adaptive cardio-
vascular regulatory systems. Moreover, the short-
range fractal or scaling exponent α1 extracted from
these correlations is a powerful predictor of mortal-
ity for subjects with an impaired left ventricular func-
tion. In general, the RR-interval data required for
this analysis are derived from long-term ECG record-
ings during free-running conditions. Yet short-term
recordings are more likely to be obtained in some
practical circumstances. Here we compare the α1
exponents extracted from RR-interval series (9 am-
6 pm) of 51 adults in normal sinus rhythm, and the
α1 calculated from 3 shorted segments of only 700
beats obtained from the same series at 9:00 am, 1:30
pm, and 5:00 pm. We found no significant differ-
ences between the scaling exponents derived from the
whole 9 hours series and the short segments at 9:00
am and 5:00 pm, but did find significant differences
when comparing the whole series with the short seg-
ment at 1:30 pm. Thus, only if the time of the day
is taken in consideration, short segments of heartbeat
data could be used to obtain representative α1 expo-
nents.

Introduction

To examine autonomic and central dynamics via R-R
interval fluctuations or heart rate variability (HRV), new
methods from statistical physics have recently been de-
veloped [1, 2] so complementing conventional measures
to quantify HRV data [3, 4]. Such methods provide clin-
ical useful information [3, 4] as heartbeat fluctuations in
healthy subjects show fractal temporal structures, char-
acterised by long-range power-law correlation over time
scales [1, 5], which breakdown under pathological condi-
tions [1, 4, 5, 6].

Accordingly, among several HRV measurements, in-
cluding parameters derived from a linear spectral charac-
terisation and approximate entropy, the short-range frac-
tal like scaling exponent α1 has showed the best overall
independent accuracy in predicting mortality of patients
with impaired left ventricular function [1, 4, 7, 8]. This

parameter is obtained by Detrended Fluctuation Analysis
(DFA), which confers advantages over other fractal meth-
ods as it can be applied to non-stationary data, a crucial
requirement for analysing HRV data because the heart pe-
riod fluctuates in response to environmental factors, such
as posture or physical activity, but also during controlled
manoeuvres that are used to minimise the effects of these
conditions [4, 9, 10]. Irregularities in breathing patterns
are typical factor producing this behaviour. In fact, it is
recognised in some circles that the inhomogenity may
also occur as in intrinsic property of HRV data [9, 10].
Conveniently, any invariant scaling characteristics in the
heart rate fluctuations obtained by DFA are mostly at-
tributed to the intrinsic heartbeat dynamics with the ad-
vantage of not having to rigourously control physical ac-
tivity or provide external stimulus when collecting data
[11].

In general, the RR-interval data required to quan-
tify scaling exponents are derived from long-term ECG
recordings collected during free-running conditions [1, 3,
4, 12] that provide enough data to obtain reliable estima-
tions [12]. Yet short-term recordings are more likely to
be obtained in some practical circumstances, so becom-
ing important to asses the possibility of obtaining repre-
sentative α1 exponents from these recordings.

Methods

We compared the α1 exponents extracted from RR-
interval series (9 am-6 pm) of 51 adults in normal sinus
rhythm, and the α1 calculated from 3 shorted segments of
only 700 beats (corresponding to approximately 10 min-
utes of adult data at rest) obtained from the same series
at 9:00 am, 1:30 pm, and 5:00 pm. These data were gath-
ered from the public PhysioBank [13], which includes
annotations for identifying the corresponding time of the
day. The analysis was limited to such window of observa-
tion during the day to avoid the day-night and sleep stage
differences in the scaling behaviour of RR-interval data
that have been reported elsewhere [11, 14].
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 DFA was used to quantify the α1 exponents as follows
[1]. Initially, the original RR interval or HRV series is
summed by:

Y (k) =
k

∑
i=1

[RR(i)−RRave] (1)

where Y (k) is the kth value of the resulting series
(k=1,2,. . . ,N), RR(i) is the ith RR interval, and RRave is
the average RR interval of the entire original series of to-
tal length N.

Next, this series is divided into windows, or boxes, of
equal numbers of n beats or RR intervals. In each win-
dow, the local trend Yn is obtained by a least-squared line
fit. Higher order polynomials may also be used for this
fitting procedure, but it has been reported that the inher-
ent deviations at small scales of DFA become stronger
with higher detrending orders [15]. The trend is locally
subtracted from the summed series to reduce the non-
stationary artifacts. The average root-mean-square fluc-
tuation, F(n), is then calculated:

F(n) =

√
1
N

N

∑
k=1

[Y (k)−Yn(k)]2 (2)

The previous procedure is repeated for all window
sizes (time scales). Consequently, the relationship on
a double-log graph between these fluctuations F(n) and
time scales n can be approximately evaluated by a linear
model: F(n) ∼ nα (see Figure 1). A resulting slope, or
scaling exponent α , of 0.5 indicates white noise and the
absence of long-range correlations, whilst an exponent of
1 reflects the behaviour of a 1/ f β process (β = 1) hav-
ing persistent fractal correlations. The scaling or frac-
tal exponent α , is usually estimated by the slope of the
double-log plot covering the short (α1 4 to 11 beats [3])
or long-range (α2 > 11 beats [3]). Given the duration
of our analysed RR-interval short segments (having 700
beats), only results for the short-range scaling exponent
α1 were explored here as no reliable estimation for α2
would be obtained [12].

Results

Using a Wilcoxon signed rank test, we found no sig-
nificant differences between the scaling exponents de-
rived from whole 9 hours series (α1 median 1.3229) and
the short segments at 9:00 am (α1 median 1.3220, p-value
0.4820) as well as 5:00 pm (α1 median 1.2688, p-value
0.0704), but did find significant differences when com-
paring the whole series with the short segment at 1:30
pm (α1 median 1.1898, p-value 0.0048).

It is convenient to describe that α1 values above 1 ap-
pear to result from the typical relatively smooth oscilla-
tions associated with respiration that dominate the short-
range dynamics, as suggested in Ref. [1].

Figure 2 includes notched box plots to show the scal-
ing exponents α1 derived from all 9 hours series and short
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Figure 1: Typical results obtained by applying DFA to an
RR-interval short segment of 700 beats. Whereas n in-
dicates the number of beats or RR intervals, F(n) stands
for the average root-mean-square fluctuation and α1 indi-
cates the short-range scaling exponent.

segments at 9:00 am, 1:30 pm as well as 5:00 pm. Table
1 summarizes results of the Wilcoxon test.

Table 1: Wilcoxon signed rank test results between the
scaling exponents derived from whole 9 hours series and
the 700 beats short segments at 9:00 am, 1:30 pm as well
as 5:00 pm.

α1 median p-value

9 hours series 1.3229

Segment at 9:00 am 1.3220 0.4820

Segment at 1:30 pm 1.1898 0.0048

Segment at 5:00 pm 1.2688 0.0704

Discussion

Perkiomaki et. al. [16] have also found that short-
term 10 minutes ECG recordings are sufficient to obtain
representative individual data about the α1 exponent of
24-hours RR-interval series in both healthy subjects and
postinfarction patients.
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Figure 2: Notched box plots showing the α1 exponents
derived from all 9 hours series and segments at 9:00 am,
1:30 pm as well as 5:00 pm.

Such study was motivated by recognising the impor-
tance of measuring α1 as this becomes more powerful
predictor of mortality than other conventional measures
of HRV data. However, Hu et. al. [17] have recently
reported that the scaling exponent exhibit a significant
circadian rhythm, having a sharp peak at approximately
10:00 am that is independent from scheduled behaviour
and mean heart rate. As they estimated the scaling ex-
ponent over the range of n from 20 to 400 beats (instead
of 4 to 11 as we reported here), caution should be taken
when comparing their with our results. Yet the changes
in α1 during wake hours (Figure 2) may also be related to
the involved circadian phase. More to the point, the scal-
ing exponents for signals comprised of mixed segments
have been found to be dominated by segments having
higher scaling exponents [18], even when their relative
fraction in the signal is small. Thus, the scaling expo-
nent derived from the whole 9 hours series analysed here
should mainly reflect the higher exponents values of seg-
ments like that at 9:00 am (Table 1). Clearly, this should
point to the importance of performing local estimations
of α1 at different times of the day, as we believe that po-
tential information like the variation in the exponents of
segment at 1:30 pm, which even reveals cases with un-
correlated dynamics, cannot be detected by estimating a
global α1.

Conclusions

Given that our results are in accordance with studies
reporting good comparability between the scaling expo-
nents obtained from long- and short-term recordings, but
also with other reports showing that the scaling exponent
involves changes related to circadian factors [16, 17], we
conclude that only if the time of the day is taken in con-
sideration, short segments of heartbeat data could be used
to obtain representative α1 exponents.
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