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Abstract:1 The paper presents a new method, based 
time-frequency analysis, i.e. wavelet transform, to 
detect the respiratory problems occurring when 
polysomnographic sleep monitoring is performed. 
The EMG Chin (or Submental EMG) is one of the 
polysomnographic signals recorded in order to 
identify respiratory problems of the patients. After 
the submental EMG (SM EMG) is cleaned of power 
line interference, it is further analyzed using the 
wavelet transform to extract the apnea episodes. The 
correlation with the sound signal recorded by a 
microphone is performed to identify the snoring 
episodes, which show up also in segments with an 
increased amplitude in EMG Chin. 
 
Introduction 
 

Obstructive Sleep Apnea (OSA) is a disease in 
which the respiratory airways involuntarily collapse 
during sleep, leading to serious consequences. An OSA 
attack is characterized by repeated episodes of upper 
airway closure during sleep and is defined as the total 
cessation of respiratory airflow that lasts at least for 10 
s. It has been proven that the patients affected by OSA 
are generally exposed to hypertension, ischemic heart 
diseases and stroke [1]. OSA is often accompanied by 
daytime sleepiness, which includes the danger of 
industrial accidents, driving problems and decreasing of 
the work quality. 

That is why the patients are usually under 
observation in the hospital all night in order to monitor 
and investigate their problem. This complete analysis, 
over a long period of time and including a lot of signals 
(respiratory signals, ECG, EEG, EOG, EMG, video 
monitoring, etc) is defined as polysomnogram (PSG). 
The use of the PSG became more frequently in 
diagnosing respiratory diseases, but the problem is that 
the polysomnographic analysis is very expensive. In 
order to reduce the costs, sleeping laboratories have 
tried to use only a restricted number of signals to obtain 
the information about the respiratory problems. E.g., the 
RR-interval (RRI) analysis of the electrocardiogram 
(ECG) is a good method to indicate the respiratory 
problem, because it was shown that some breathing 
problem affects the heart rate [2, 3]. 
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 Recently, different studies have proved that OSA 
syndrome is related with the snore [4]. Some groups 
tried to use the signal collected from the microphone in 
order to determine the snoring segments, known that 
there are differences between the snorers with and 
without OSA [5]. Another signal of interest is the 
electromyographic signal collected from the chin (EMG 
Chin) because it is related directly to the respiration 
process [6]. The problem is that this signal is highly 
distorted by the snore and must be recovered before 
application of any analysis. 

In our study we used an innovative technique for the 
analysis of the EMG Chin signal to detect the periods 
when respiratory disturbances happen. 
 
Recording Technique 
 

The PSG data used in the study were collected at 
ASKLEPIOS Medical Center and Clinic for Lung 
diseases, Gauting, Munich, Germany, a hospital 
specialized in lung diseases. 

The following signals were recorded during sleep by 
the PSG machine: (1, 2) electroencephalogram from 
brain (EEG 1 — C4/A1, EEG 2 — C3/A2, EEG 3 — 
C3/C4), (3, 4) electrooculogram  from eye movements 
(EOG Right — F4/A1, EOG Left — F3/A2), (5) 
position of the body (Bodypos HANDY — F3/A2), (6) 
electromyogram from the chin muscle (EMG Chin — 
P4/P3), (7) electrocardiogram (ECG), (8 - 10) the 
respiratory flow through nose and mouth (Resp Flow 
Nose Right — Fp2/Cz, Resp Flow Nose Left — 
Fp1/Cz, Resp Flow Mouth — Fz/Cz), (11, 12) signals 
from the movement of ribcage and abdomen (Resp 
Thorax — Thrx, Resp Abdomen — Abdm), (13) sound 
recorded by a microphone placed above the larynx 
(Sound raw — Snd), (14) the oxygen saturation, 
measured by a pulsoxymeter (SAO2 Schwarz Oxi), (15, 
16) elctromyogram of the right and left leg (EMG 
TibialR — T4/T6, EMG TibialL — T3/T5), (17) 
position of the body (Bodypos Schwarz — Pos), (18) 
other additional method for measuring breathing with 
nasal pressure canula (CPAP Schwarz — Prss). 

The sampling frequencies for the signals, fs, are 
shown in Table 1. 
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 Table 1: Sampling frequencies of the recorded signals 
 

Channel Units fs 
1. EEG --- C4/A1       µV 125 Hz 
2. EEG --- C3/A2       µV 125 Hz 
3. EOG RIGHT F4/A1     µV 125 Hz 
4. EOG LEFT F3/A2     µV 125 Hz 
5. BODYPOS HANDY F3/A2 '' 125 Hz 
6. EMG CHIN P4/P3      µV 250 Hz 
7. ECG --- Ecg         µV 125 Hz 
8. RESP FLOW Fp2/Cz    ''   25 Hz 
9. RESP FLOW Fp1/Cz    ''   25 Hz 
10. RESP FLOW Fz/Cz     ''   25 Hz 
11. RESP THORAX Thrx    µV   25 Hz 
12. RESP ABDOMEN Abdm   µV   25 Hz 
13. SOUND RAW Snd       µV 250 Hz 
14. SAO2 SCHWARZ Oxi    %   25 Hz 
15. EMG TIBIALR T4/T6   µV 250 Hz 
16. EMG TIBIALL T3/T5   µV 250 Hz 
17. BODYPOS SCHWARZ Pos ''   25 Hz 
18. CPAP SCHWARZ Prss mBar   25 Hz 

 
Wavelet Transform 
 

Wavelet techniques [7] can localize both time and 
frequency components, as signals are processed and 
analyzed at various time scales and resolutions. General 
trends are visible at the lower-resolution scales and 
high-frequency components are visible at finer, more 
detailed scales. Basically, the wavelet transform (WT) 
decomposes a signal onto a set of orthonormal basis 
functions that all together comprise a wavelet family. 
Due to the different analyzed signal segment lengths 
determined by different window sizes of the basis 
functions, higher frequencies are better resolved in time, 
and lower frequencies are better resolved in frequency. 
This means that a certain high frequency component can 
be better located in time (with less relative error) than a 
low frequency component. On the contrary, a low 
frequency component can be better located in frequency 
compared to high frequency components. Like with 
other time-frequency approaches such as short-time 
Fourier transform, time or frequency resolution can be 
made arbitrarily good with wavelet analysis, but not 
simultaneously. 

Thus, wavelet processing provides good frequency 
analysis at low frequency and good time resolution at 
high frequencies. The noise components in a signal can 
be isolated using detailed resolutions while important 
high-frequencies transients can be also preserved due to 
the time localization. Because noise is easily isolated in 
the wavelet domain, it can be removed while leaving 
important components almost unaffected. 

In digital signal processing, the discrete wavelet 
transform (DWT) is employed. The result of the DWT 
is a multilevel decomposition. Wavelet coefficients at 
detailed high-resolution levels correspond to high 
frequency signal components, whereas low-resolution 
levels correspond to low frequency components. Now it 

is more practical to use filter coefficients rather than 
actual functions since wavelet functions can rarely be 
expressed in closed form. The DWT requires two sets of 
filters. The scaling filter, roughly equivalent to a low-
pass filter and denoted as the vector h, is computed 
from a wavelet scaling function. Its coefficients sum to 

2 . 
The wavelet filter, roughly equivalent to a high-pass 

(technically a band-pass) filter and denoted as g, is the 
time-reversed scaling filter with negative alternating 
coefficients whose sum is zero. The discussion about an 
orthogonal decomposition of a signal can be extended to 
non-orthogonal decomposition. Some wavelet can be 
orthogonal to other wavelets, while not being 
necessarily orthogonal to their own dilatations and 
translations. These wavelets are known as bi-orthogonal 
wavelets. The wavelets generated by low-pass and high-
pass decomposition filters are orthogonal to the wavelet 
generated by the respective reconstruction filters. With a 
time reversal and alternation of coefficient signs, the 
low-pass wavelet in the decomposition is the high-pass 
wavelet in the reconstruction and the high-pass wavelet 
in the decomposition become the high-pass wavelet in 
the reconstruction. 

The time-scale properties of the discrete wavelet 
transform are shown in this way: the signal components 
are localized in time (due to their position in each level) 
and by scale (roughly corresponding to frequency 
bands). For a time sequence [ ]110 ,...,, −= nxxxx , where 

mn 2=  and m is a positive integer, the corresponding 
wavelet transform is double indexed. In Table 2, the 
Wavelet coefficients are described. 

 
Table 2: Wavelet coefficients 
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s is wavelet scale, reflecting the frequency 

information of the signal, and t is the translation index, 
indicating the waveform shifting in time. The scale is 
the inverse of frequency. That is, high scales correspond 
to low frequencies, and low scales correspond to high 
frequencies. Consequently, a little peak in the wavelet 
plot corresponds to the high frequency components in 
the signal, and a large peak corresponds to low 
frequency components in the signal. The wavelet 
spectrum of a spike describes both frequency 
components and their time location. In that way, 
waveform matching in the wavelet domain preserves the 
best properties of matched filter technique in the time 
and frequency domains. 
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 The discrete wavelet transform provides sufficient 
information both for analysis and synthesis of the 
original signal, with a significant reduction in the 
computation time. It is considerably easier to implement 
when compared to the continuous wavelet transform [8, 
9] and, therefore, it is used in this study with the 2nd 
order Daubechies wavelet basis; their waveforms have 
the biphasic feature similar to the EMG components. 
This type of wavelet basis is also orthogonal and 
compactly supported. 

Results 
 

The EMG Chin signal contains among the disturbing 
signals (like ECG and vibrations due to the snoring) 
information that can help in detecting the sleep apnea 
segments. In Fig. 1, an example of a segment containing 
sleep apnea is depicted (the respiratory signals are 
interpolated to get the sampling frequency of 250 Hz). 
 

Figure 1: PSG containing apnea segments 

Figure 2: PSG segment disturbed by snore, but with no 
apnea segments. The problem with the respiration, 
described by the low amplitude of the respiratory 
signals, is reflected in the EMG Chin 

The high amplitude episodes within the EMG Chin 
are not only related with the respiratory obstruction but 
appear also during the snoring episodes, too, usually 
correlated with low amplitude of the respiratory signals. 
In order to detect the respiratory problems, thus it is so 
necessary to identify first the snore segments [10] 
before analysis of the chin muscle contraction is 
possible. 

In order to identify the muscle contractions in the 
EMG chin, the first detailed coefficient of the wavelet 
transform, d1, is used. Its energy, using a window of 0.4 
s, allows the detection of the contraction periods (Fig. 
2). For that purpose, the variations of the energy within 
a window of 0.4 s are analyzed. 
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Figure 3: Processing of the PSG containing apnea 
segments 
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 Discussion 

The chin muscle activity related to the snore can be 
identified by analyzing the correlation between the high 
frequencies components of the EMG Chin and Sound 
channels. In our study we have used DWT to isolate the 
high frequencies [9]. The EMG Chin segments where 
the chin contracts, undisturbed by the snore, are further 
analyzed using spectral analysis; they proved to be 
related with the occurrence of apnea episodes. 

The low frequency components extracted from the 
EMG Chin by use of the DWT correspond to the 
respiratory activity. 

The further study will investigate in more detail the 
methods to detect the apnea episodes using time-
frequency analysis. 

Conclusions 
 

The EMG Chin signal can be used to detect the 
segments when the subjects have respiratory problems 
over the night, thus it provides an assess to identify the 
obstructive sleep apnea phases. 
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