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Abstract: Vestibulo-ocular reflex (VOR) is an impor-
tant source of diagnostic information for physicians.
By analyzing it, they can recognize many disorders
of the vestibular organ. The VOR signal is a response
of the vestibular organ to the so called head rotation
test. It is measured by tracking the eye movements,
which are, however, distorted by saccades. After fil-
tering the saccades out we are left with discontinu-
ous signal segments. This paper presents an approach
to align them to form a smooth signal with the same
frequencies that were originally present in the source
signal. The approach is based on a direct estimation
of the signal component parameters. Two methods of
direct search are compared—the Nelder-Mead sim-
plex search and the evolutionary strategy with covari-
ance matrix adaptation. The experimental evaluation
on signals with 1 to 5 components revealed that the
evolutionary strategy is more robust, scalable and re-
liable method.

Introduction

Vestibulo-ocular reflex (VOR) is responsible for
maintaining retinal image stabilization in the eyes dur-
ing relatively brief periods of head movement [1]. By an-
alyzing the VOR signal, physicians can recognize some
pathologies of the vestibular organ which may result in
e.g. failures of the balance of a patient. The recognition
of the pathologies is usually done by examining the slow-
phase eye velocity and several points of the frequency re-
sponse (gain and phase shift) of the vestibular system.

The principle of the frequency response measurement
is relatively simple: the patient is situated in a chair
which is then rotated in a defined way following a source
signal—sine wave or a mixture of sine (MOS) waves.
The chair with the patient is situated in the dark, the pa-
tient has his eyes open and performs some mental tasks
which should distract him from mental visualization that
could prevent the eye movements which are subsequently
measured. This is called the head rotation test. Since the
resulting eye signal is distorted by fast eye movements,
so-called saccades, they must be removed from the sig-
nal. This is usually done by computing the angular veloc-
ity and the segments with the velocity higher than a pre-
defined threshold are simply omitted from the signal. A

method for discovering the right threshold was presented
e.g. in [2]. The resulting signal consists of segments of
slow phase movements which we are interested in. How-
ever, they are not aligned to form a smooth signal (see
Fig. 1).
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Figure 1: Simulated VOR signal with saccades removed.
This is the input of the algorithm.

This VOR signal serves as a source for measur-
ing the slow-phase velocity and the frequency response.
The measurement of frequency response is usually done
on the basis of interpolating these segments with some
smooth curves and performing a Fourier transform of the
resulting continuous signal. The frequency response cre-
ated this way contains, however, some artifacts that come
from the artificial interpolation curves and are not gener-
ated by the vestibular system.

This paper introduces a method for the direct estima-
tion of the gain and phase lag of the individual sine com-
ponents of the underlying MOS signal, i.e. for the mea-
surement of several points of the frequency response at
the same time. After the estimation, the VOR signal seg-
ments should match1 with the corresponding parts of the
estimated MOS signal, as shown in Fig. 2.
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Alligned VOR segments and the underlying source estimate

Figure 2: VOR signal segments aligned with the esti-
mated MOS signal. The parameters of the MOS signal
are output of the algorithm.

1In fact, the slow-phases of the measured VOR signal should go
in the opposite direction than the source MOS signal. When the chair
rotates to the right, the eyes should move to the left and vice versa.
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 Problem Specification

It is assumed that the source signal (which controls
the rotation of the chair with the patient) is formed as a
mixture of sine waves:

yS(t) =
n

∑
i=1

aS
i sin(2π fit +φ S

i ) , (1)

where y(t) is the source signal and ai, fi and φi are the
amplitude, the frequency and the phase shift of the indi-
vidual sine components, respectively. The superscript S
indicates the relation to the source signal. Note that the
frequencies fi are not marked with this superscript.

Furthermore, it is assumed that the output signal of
the vestibular organ is of the same form as the input one,
i.e. it contains only sine components with the same fre-
quencies as the source signal but possibly with different
amplitudes and phase shifts. It should be of the form

y(t) =
n

∑
i=1

ai sin(2π fit +φi) . (2)

If we knew the ai and φi parameters of the output MOS
signal components, we could calculate the amplification
(ai/aS

i ) and phase lag (φi − φ S
i ) at individual frequencies

and deduce the state of the vestibular organ. (Ideally, we
should have amplification2 of 1 and minimal phase lag
at all frequencies, which is not possible. However, physi-
cians can analyze the deviations and diagnose the states
that are not OK.)

Unfortunately, we do not have access to the output
MOS signal described by Eq. 2. We have only the mea-
sured VOR signal, i.e. the segments of the output MOS
signal that are left after filtering out the saccades from the
eye-tracking signal (see Fig. 1)3. However, we can search
for the unknown parameters ai and φi of the output MOS
signal by solving the optimization task described in the
following text.

Minimizing Loss Function

Let m be the number of segments of the VOR sig-
nal at hand, v j(t), j = 1 . . .m, be the actual j-th segment
of the VOR signal and t ini

j and tend
j be the initial and the

final time instants for the j-th signal segment. As stated
above, we can find the parameters of the output MOS sig-
nal by searching the 2n-dimensional space of points x,
x = (a1,φ1, . . . ,an,φn). Such a vector of parameters rep-
resents an estimate of the output MOS signal and we can
compute the degree of fidelity with which the MOS cor-
responds to the VOR signal segments by constructing a
loss function as follows:

L(x) =
m

∑
j=1

∫ tend
j

tini
j

((v j(t)− v̄ j)− (y(t)− ȳ j))
2dt , (3)

2Or, rather -1 with respect to the previous footnote.
3It is important to note that in this article only artificially generated

(simulated) VOR signals were used. This allows for assessing the pre-
cision of the proposed method.

where v̄ j is the mean value of the j-th VOR signal seg-
ment and is computed as

v̄ j =
1

tend
j − t ini

j

∫ tend
j

tini
j

v j(t)dt , (4)

and ȳ j is the mean value of the current estimate of the out-
put MOS signal related to the j-th segment and is com-
puted as

ȳ j =
1

tend
j − t ini

j

∫ tend
j

tini
j

y(t)dt . (5)

Subtracting the means v̄ j and ȳ j from the VOR signal seg-
ments v j(t) and MOS signal y(t), respectively, we try to
match the VOR signal segment to the corresponding part
of the MOS signal. If they match, their difference is zero,
otherwise it is a positive number quadratically increasing
with the difference. This operation is carried out for all m
VOR signal segments.

In practice we work with the discretized versions of
the signals so that we usually substitute the integral with
a sum. The equations are then4

L(x) =
m

∑
j=1

tend
j

∑
i=tini

j

((v j(i)− v̄ j)− (y(i)− ȳ j))
2 , (6)

v̄ j =
1

tend
j − t ini

j

tend
j

∑
i=tini

j

v j(i) , (7)

ȳ j =
1

tend
j − t ini

j

tend
j

∑
i=tini

j

y(i) . (8)

Nature of the Loss Function

In Figures 3, 4 and 5 it is shown what the landscape of
the loss function L(a1,φ1,a2,φ2) looks like if two of the
parameters are kept fixed. For these figures, the optimal
values of the parameters are set to x = (0.6,1,0.2,0.2)
(marked with a small cross in the figures). It seems that
the loss function L(x) exhibits many features which are
considered to be hard for any optimization algorithm,
namely:

Non-separability. It is not sufficient to optimize the pa-
rameters one after another. The profile of the loss
function along one variable changes significantly
with a change in another variable. See Figures 3, 4
and 5—the cross describing the optimum is not situ-
ated in the optimum of the cut if the other parameters
are not optimal as well. The function cannot be de-
composed to a set of simpler optimization tasks.

Long narrow valleys not aligned with coordinate axes.
See Fig. 3. Even gradient based algorithms have
problems finding minimum of such a landscape.
They have to perform many small steps along the
bottom of the valley before they hit the optimum.

4In the equations 6, 7 and 8, the arrays v j(i) are supposed to be
indexed with i ranging from t ini

j to tend
j .
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 Multimodality. See Fig. 5. There are several local min-
ima. In this case they are caused by the periodicity of
the sine function with respect to the phase shift.

However, based on the experience when optimizing
this function I hypothesize that this function could be uni-
modal, but with very narrow and perhaps tortuous vallyes
leading to this global optima.

Optimization Methods

The parameter vector x is projected to the loss func-
tion via the estimate of the MOS signal y(i) (and via the
mean values y j(i)). In principle, the loss function L(x) is
differentiable with respect to the individual parameters.
Thus, to find the optimal values of the parameter vector
x we could compute the partial derivatives of L and use
a gradient-based optimization method. However, this ap-
proach is not pursued in this article.

Instead, two methods of direct black-box optimization
are used: the well known Nelder-Mead downhill simplex
search and the evolutionary strategy with covariance ma-
trix adaptation (CMA-ES). There is not enough space in
this article to describe them in detail, but a short simpli-
fied review is useful.

Nelder-Mead simplex search. It is a well-known
and established deterministic optimization algorithm [3].
During the search in D-dimensional space it maintains a
set of D + 1 points, forming the so-called simplex. The
search is performed along a line which goes through the
worst point of the simplex and the average of the other
points. After a better point is found, it replaces a point
in the simplex and the algorithm iterates. Because of the
simplex behavior during the optimization, the algorithm
is sometimes also called the amoeba algorithm.

Evolutionary Strategy with Covariance Matrix Adap-
tation. It is very recent and progressive stochastic opti-
mization algorithm [4]. It maintains a D-dimensional nor-
mal distribution from which it samples new data points.
The distribution is then in turn adapted based on the loss
function values for these new points. The algorithm per-
forms a kind of iterative principal component analysis of
the selected perturbation vectors.

One of the aims of this paper is to decide which of
these two algorithms is more suitable for solving this par-
ticular optimization task.

Experimental Setup

The above described method was tested on artifi-
cially generated VOR signals to assess its success and
precision and to decide which of the optimization algo-
rithms is more suitable for this task. The tests were car-
ried out on signals consisting of 1 to 5 sine components,
i.e. the search was carried out in 2-, 4-, 6-, 8-, and 10-
dimensional parameter spaces.

Generating VOR signal. First, for each sine compo-
nent of the signal, the values of frequency, amplitude

and phase shift were randomly generated. The ranges
for individual parameters can be found in Table 1. Using
these randomly generated values, a continuous MOS sig-
nal (which is to be estimated) is created. This signal then
undergoes a disruption process which cuts it to individual
segments with ‘pauses’ between them. This way the gaps
created by filtering out the saccades are simulated. The
segments are then placed to the same level (see Fig. 1).

Table 1: Settings for parameters of artificial VOR signal

Parameter Value (Range)

fi 〈0.05,2〉
ai 〈0.2,2〉
φi 〈0,π/2〉
Sampling Freq. 500 Hz
Signal Duration 20 s
Saccade Duration 0.05 s

Experimental Evaluation. For each number of compo-
nents, 9 different VOR signals were generated. For each
of them the parameters of the underlying MOS were es-
timated by minimizing the loss function using both the
Nelder-Mead simplex search and the CMA-ES. In each
run, the algorithms were allowed to perform 10,000 eval-
uations of the loss function and a particular run was con-
sidered to be successful if the algorithm found a parame-
ter set with the loss function value lower than 10−8.

Results

In this section, the results are surveyed, described and
discussed.

Success Rates

First, let us review the success rates of both algo-
rithms when estimating the parameters of the MOS signal
with the number of components ranging from 1 to 5 (see
Tab. 2).

Table 2: Success rates (in percentages) of Simplex and
CMA-ES algorithms

Components Simplex CMA-ES

1 100.0 100.0
2 100.0 100.0
3 100.0 100.0
4 44.4 100.0
5 0.0 100.0

As we can see, the simplex algorithm has difficulties
with finding the optimum of the loss function in less than
10,000 evaluations when the underlying MOS signal has
4 or more components.
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Figure 3: Cuts through the landscape of the loss function L(a1,φ1,a2,φ2) with φ1 and φ2 fixed at their optimal values (left)
and at values different from the optimal ones (right).
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Figure 4: Cuts through the landscape of the loss function L(a1,φ1,a2,φ2) with a2 and φ2 fixed at their optimal values (left)
and at values different from the optimal ones (right).
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Figure 5: Cuts through the landscape of the loss function L(a1,φ1,a2,φ2) with a1 and a2 fixed at their optimal values (left)
and at values different from the optimal ones (right).
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Figure 6: Number of evaluations needed to find a solution with quality better than 10−8 as a function of the number
of components of the underlying MOS signal. Middle line: median, box: interquartile range, whiskers: minimum and
maximum.

Speed of the Algorithms

The comparison of speed is based on the number of
evaluations needed to find a solution with loss lower than
10−8, i.e. only successful runs are considered. The results
are summarized in Fig. 6. The two graphs reveal that the
number of needed evaluations increases with the number
of components (i.e. with the dimensionality of the search
space) much faster for the simplex search method than
for the CMA-ES where the increase is almost only linear
(at least subquadratic). CMA-ES is clearly more scalable
solution than the simplex search.

Evolution Profiles

The progress of evolution is depicted in Fig. 7. It
presents the loss function value of the best solution found
so far, averaged over all successful runs. Again, there is
no line for the simplex method searching for parameters
of 5 components.

Based on this graph, we could make a recommenda-
tion not to use the simplex search method when searching
for parameters of the MOS signal with more than 2 com-
ponents. The CMA-ES solves such tasks much better.

Precision of the Estimates

The precision of the solutions provided by the algo-
rithm must be assessed. We know that the segments of
the simulated VOR signal come from a MOS signal with
some specified parameters x′ = (a′1,φ

′
1, . . . ,a

′
n,φ ′

n). The
optimization algorithm provides the estimate of these pa-
rameters5 x = (a1,φ1, . . . ,an,φn). The errors in estimates
of the amplitudes are computed as

ea
i =

|ai −a′i|
a′i

, (9)

5It is assumed that these estimates are ‘normalized’, i.e. that all ai ≥
0 and all φi ∈ (−π,π〉.
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Figure 7: Typical progress of successful search runs as
done by the simplex method and by the CMA-ES. Both
the leftmost lines (solid and dashed) belong to 1 compo-
nent, the rightmost dashed line belongs to simplex search-
ing for parameters of 4 components while the rightmost
solid line belongs to CMA-ES searching for parameters
of 5 components.

and the errors in estimates of the phase shifts are com-
puted as

eφ
i =

|φi −φ ′
i |

π
. (10)

The maximal error values for estimates of amplitudes
and phase shifts across all components are presented Tab.
3. The unsuccessful runs are excluded. That is also the
reason of missing data for the simplex search with 5
components—there were no successful runs.

Although other fitness thresholds for judging the suc-
cess of individual runs were not tested, the threshold
presents a way how to tune the quality of the parameter
estimates.
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 Table 3: Maximal errors for successful runs

Simplex CMA-ES
Comps max(ea) max(eφ ) max(ea) max(eφ )

1 1.13e-4 5.71e-6 9.65e-5 2.21e-6
2 6.34e-5 8.41e-6 5.50e-5 5.49e-6
3 4.16e-5 5.74e-6 4.46e-5 6.57e-6
4 1.30e-5 4.11e-6 3.70e-5 1.17e-5
5 — — 2.84e-5 3.43e-6

Summary, Conclusions and Future Work

In this paper, a new method of VOR signal processing
was introduced and experimentally evaluated on artifi-
cially generated signals. Similarly to other conventionally
used methods, it relies on the right identification of the
fast eye movements, saccades, that must be filtered out
of the signal in advance. After that, conventionally used
methods interpolate the signal segments and carry out
the Fourier transform to obtain the amplification and the
phase shift on the original frequencies. On the contrary,
this method directly estimates these parameters from the
signal segments trying to align them with the underlying
estimated mixture of sine waves.

In the experimental section, two direct search algo-
rithms were compared. Although the simplex search is
faster for signal with 1 or 2 sine components, it does not
scale up well. For signals with 3 or more components,
the CMA-ES is preferable—it is more robust, reliable and
scalable. Depending on the selected threshold for the loss
function value, if the individual run succeeds (which was
always the case for the CMA-ES), the found solution is
very precise compared to the results of Fourier transform.

Although this article can serve as a good proof of con-
cept, this method is more time-demanding than the use of
Fourier transform and could be used only as an off-line
processing technique. Further investigation is needed to
assess if this additional effort is actually worthwhile—if
the added value in the precision can be used by physicians
to perform better diagnostics.
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