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Abstract: In this paper the performance of neural 
network models for non-invasive temperature 
prediction in two points of a glycerine medium, 
irradiated with therapeutic ultrasound is 
investigated. These points are located in the axial 
line of the therapeutic ultrasound transducer. It is 
assumed that the temperature in these points is non-
linearly related with some spectral features and one 
temporal feature, extracted from the collected A-
Scans. The neural networks used were Radial Basis 
Functions Neural Networks (RBFNN), where the 
best-fitted models structures for each point were 
selected in a genetic multi-objective fashion, due to 
the enormous number of possible model structures. 
The best-fitted models predicted temperature curves 
of two unseen data sequences during approximately 
2 hours with maximum absolute errors less than 0.5 
ºC. 
 
Introduction 
 

One of the major limitations of thermal therapies is 
the lack of accurate knowledge of the temperature 
patterns in the region under treatment. Precise 
temperature predictors (absolute error less than 0.5 ºC 
[1]) would enable correct therapy guidance, by means of 
an efficient Therapeutic Ultrasound (TUS) 
instrumentation control. Many works describing ways 
of estimating temperature non-invasively have been 
published. Possible methods include impedance 
tomography, microwave radiometry, and magnetic 
resonance imaging. Some works employ ultrasonic 
conventional imaging to estimate the temperature in 
time and space. The work of Simon et al. [2] uses 
Imaging UltraSound (IUS) thermometry and considers 
temperature linearly related with sound velocity and 
medium expansion. It achieves a maximum absolute 
error of 0.44 ºC, an average error of –0.02 ºC, and a 
mean squared error of 0.03 (ºC)2 at the focus of the TUS 
transducer, where the temperature ranged between 20.5 
ºC and 24.5 ºC in 90 seconds. 

The present work evaluates the potential of a non-
linear Neural Network (NN) model for non-invasive 
estimation of the temperature profile at two discrete 
points, in a glycerine reservoir irradiated with 
physiotherapeutic ultrasound. These points are 24 and 
48 mm distant from the TUS transducer face. This work 
follows previous studies in punctual and invasive 
temperature estimation using a similar modelling 
strategy. The results obtained showed that these models 
performed well in this kind of problems [3]. 

Manual selection of the best-fitted NN structures is a 
high time consuming task given the enormous number 
of possible structures. In this work, the Multi-Objective 
Genetic Algorithm (MOGA) [4] was applied to handle 
this problem. The MOGA was applied with success in 
other problems involving RBFNN structure selection 
[3][5], encouraging its use in the present work.  
 
Materials and Methods 
 

A circular shape TUS transducer working at 1 MHz, 
with a nominal effective radiation area of 3.5 cm2 
irradiates continuously a 1400-ml glycerine reservoir, 
containing an irregular-shaped surface material at the 
bottom and walls to prevent standing waves formation. 
In order to obtain acoustic information from the two 
points considered, three scatterers (3-mm-radius lead 
spheres) were placed in a plan parallel to the TUS 
transducer face. The scatterers were 1-cm spaced and 
the central one was 24 or 48 mm distant from the TUS 
transducer face. A cromel-alumel (Type K) 
thermocouple was placed near to the central sphere. To 
perform non-invasive temperature estimates A-Scans 
(AS) were collected with a 5-MHz non-focused IUS 
transducer driven by a PC controlled pulser/receiver. 
The IUS beam insonates the scatterers in a plan 
perpendicular to the TUS beam. At each 10 seconds, 
during a 2-hour experiment time, an AS (2048 points, 
sampled at 40 MHz) line was saved, with its 
correspondent temperature value. For each scatterer 
distance, three sets of data were collected, 
corresponding to TUS intensities of 1.0, 1.5 and 2.0 
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 W/cm2. The correspondent temperature ranges obtained 
are shown in Table 1. 
 
Table 1: Temperature ranges 
 

Distance Intensity Temperature (ºC) 
(mm) (W/cm2) Initial Max. Final 

1.0 29.6 35.7 29.7 
1.5 29.9 37.8 30.7 24 
2.0 24.6 34.7 29.8 
1.0 28.3 33.1 29.2 
1.5 24.5 34.8 28.3 48 
2.0 28.2 38.2 31.2 

 
For each set, a total of 720 temperature points and 

corresponding AS were obtained. The glycerine was 
heated during the first hour. Then the TUS beam was 
interrupted and the medium left to cool back to room 
temperature. Figure 1 presents the schematic diagram of 
the experimental setup. 

 
 

 
 
Figure 1: Experimental setup. 
 

The construction of RBFNN models for temperature 
monitoring required temperature-dependent features, 
extracted from the collected AS. Given that temperature 
collection was only made in the central scatterer, for the 
two distances, features extraction was only performed in 
the echo originated by this scatterer in conjunction with 
the thermocouple, in order to discard information 
originated by other scatterers placed in regions 
subjected to different TUS beam patterns, and where the 
temperature profile was different from the testing point. 
A rectangular time-window was used to isolate the 
echo, then a Fast Fourier Transform was applied, and 
six spectral features computed. These features where: 
the amplitude of the fundamental component originated 
by the TUS beam (≅ 1 MHz), the amplitude of the 1st (≅ 
2 MHz) and 2nd (≅ 3 MHz) harmonics of the 
fundamental component originated by the TUS beam, 
and amplitude, bandwidth (-6 dB), and central 
frequency of the component originated by the IUS beam 
(≅ 5.5 MHz). The only temporal feature extracted was 
the time position of the envelope echo originated by the 
central scatterer. The envelope was obtained by the 
Hilbert transform procedure. 

Afterwards, the features extracted and the measured 
temperature values were filtered using a causal 
Butterworth digital filter (cut-off frequency = 1/20 of 
the Nyquist frequency; order=1), and normalised to 
values between 0 and 1. The filter parameters were 
selected having in mind the noise reduction present in 

the extracted features, preserving its fundamental 
behaviour. The normalisation was necessary to 
eliminate the scale differences that could lead to a bad 
NN training. For the remaining of this paper, the 
following conventions are used: 

• Normalised and filtered amplitude of the 
fundamental component originated by the 
TUS beam - AFTUS; 

• Normalised and filtered amplitude of the 1st 
and 2nd harmonics of the fundamental 
component originated by the TUS beam -
AH1TUS and AH2TUS; 

• Normalised and filtered amplitude, 
bandwidth, and central frequency of the 
component originated by the IUS beam – 
AIUS, BWIUS, and FIUS; 

• Normalised and filtered temporal position – 
TP; 

• Normalised and filtered temperature – T. 
 

At the end of this pre-processing phase, the 
parameters optimisation of the RBFNN (training) was 
obtained using random data selected from the three 
measured sets (1/3 from each set), for each distance, i.e., 
two training sets were obtained having in mind the 
attainment of two class of RBFNN, one for each point 
considered (24 mm and 48 mm). In the structure 
selection process the MOGA access the generalisation 
performance (i.e. performance in unseen data 
sequences) of the RBFNN candidates, using the data 
collected at 1.5 W/cm2. At the end of the MOGA 
execution two sets of best-fitted RBFNN were found 
and the selection of the two best one was based on the 
performance attained in two validation data sequences 
(not yet used in training or selection processes), 
collected at 2 W/cm2. The motivation for choosing data 
from 2 W/cm2 was the fact that these data presented 
more non-linearities than the other sets of data. 

 
 

 
 

Figure 2: Schematic diagram of a RBFNN. 
 
A RBFNN is a fully connected three-layer NN (Fig. 

2) where the first layer is a set of inputs, which connects 
the network to its environment. The second layer, the 
only hidden layer in the NN, is composed by a set of 
processing elements called neurons, which performs a 
non-linear transformation on the input data. The outputs 
of the hidden layer are linearly combined and connected 
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 to the last layer to produce the overall NN output. The 
input/output relation for a RBFNN is: 

where n is the number of neurons in the hidden layer, b 
is the bias term, ||.|| is a norm, in this particular work an 
Eucledian norm was used, and { }n

i 1(.) =ϕ is a set of non-

linear radial basis functions weighted by { }n
ii 1=α and 

centred at { }n
i

d
ic 1=ℜ∈ , being d the number of inputs. 

These functions are evaluated at points d
jx ℜ∈ and 

are usually represented by Gaussian functions: 
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In this work, the MOGA structure optimisation 
consists in the appropriate selection of the number of 
neurons in the hidden layer and the selection of inputs 
by their relevance on the model. The possible input 
candidates are the lags of AFTUS, AH1TUS, AH2TUS, 
AIUS, BWIUS, FIUS, TP, and T. In our work, the MOGA 
spams 200 iterations (generations), of 100 RBFNN 
(individuals) each. The crossover and mutation 
probabilities were set to be 0.7 and 0.5, respectively. To 
maintain population diversity, 10 % of the old 
population was changed, in each iteration, by a set of 
randomly generated RBFNN (corresponding to 10 
RBFNN). These MOGA parameters are the ones that 
produce the best results for this specific problem, and 
were selected after performing several tests. The 
MOGA search space was bounded by defining the 
possible number of neurons and inputs, and the 
maximum admissible lag for the input variables. Both 
the number of neurons and the number of inputs were 
defined to be integers in the interval [2,20], and the 
Maximum LAG (MLAG) was defined as 20. This 
means that the MOGA can choose models, which can 
use information happened up to 200 seconds in the past. 
These values are also selected after several tests 
considering other possibilities. Assuming the number of 
input variables NV=8, the total number of input terms 
that were available was IT=MLAG×  NV = 160, then 
the total number of inputs combinations (NIC) is given 
by: 

∑
=

==
20

2
257.1

n
n

IT ECNIC   (3) 

Considering the restriction in the number of neurons, 
then the total number of possible RBFNN structures 
(TNS) is: 

263.320 ENICTNS =×=   (4) 

 
This number justifies the application of a genetic 
selection instead of an exhaustive “manual” selection. 

The training of each individual was performed using 
the Levenberg-Marquardt (LM) algorithm, which is 
recognised as the best method for non-linear least-

squares problems [6], which is the case of RBFNN 
training. The LM optimises only the values of the 
centres ({ }n

iic 1= ) and spreads ({ }n
ii 1=σ ), while the linear 

parameters (b and { }n
ii 1=α ) were found using the linear 

least squares strategy. The initial value of the centres 
and spreads were found using the Optimal Adaptive K-
Means clustering algorithm [7], and the “early-
stopping” criterion was used to terminate the parameters 
optimisation. This termination criterion access the 
performance of the NN in the test data sequence (in this 
case the data collected at 1.5 W/cm2) and the LM stops 
when this performance deteriorates, preventing model 
over-training (i.e. NN which models the noise and are 
only specialised in the training data). 

In each MOGA iteration, after training, the 
performance of each individual was accessed and it’s 
ranking was executed. In the ranking operation, the NNs 
are sorted to improve the selection and reproduction of 
the best fitted. The performance was evaluated 
according to the following measures: 

• Root Mean Square Error in the Training set 
(RMSETR); 

• Root Mean Square Error in the Test set 
(RMSETE). This error is obtained by 
predicting the temperature 1 step ahead; 

• Maximum Root Mean Square Error in all 
the Prediction Steps (MRMSEPS). This 
error is obtained by predicting the 
temperature 60 steps in the future, using 
the test sequence, and taking the maximum 
error obtained in all the predictions steps; 

• Model-validity tests; 
• Linear Weights Norm (LWN); 
• Model Complexity (MC).  

The model-validity tests are explained in [8], and used 
in [5]. These tests involve the computation of the first 
and higher order correlations between model inputs, 
errors, and outputs. As explained in [8], if a model is 
adequate then a set of 8 conditions should hold. In the 
work reported in this paper only the conditions 
involving the first order correlations were used, because 
the results obtained using the high order correlations 
were not better than those presented, thus, not justified 
its use. The conditions employed were: 

)()( τδτ =eeR  Auto-correlation of the 
errors (5) 

0)( =τueR  Correlation between 
inputs and errors (6) 

 In fact, ueR  will never be exactly zero for all lags, 
so the equality is considered true if its normalised value 
is in between a 95% confidence interval defined as:  

NCI /96.1= , (7) 

where N is the number of training points. In the same 
way, the value of eeR  never equals the delta function, 
but the equality (5) is considered true if its normalised 
value is less than CI before lag one. 
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 The MC was computed as the total number of 
parameters for a particular NN structure: 

NWNSNINCMC ++×= , (8) 

Where NC is the number of centres, NI is the number of 
inputs, NS is the number of spreads, and NW=n is the 
number of linear weights. 

The attainment of best-fitted models encompasses 
the minimization of the previously referred measures by 
means of the MOGA. Having in mind the attainment of 
models with a high generalisation capacity, the RMSETE 
and MRMSEPS were defined as goals of priority 2, with 
values of 0.002 and 0.003, respectively. The maximum 
of the two correlation tests was defined with a goal 
value of CI=0.074, and with priority 1. In order to attain 
generalist models, i.e. models that are not only 
specialised on the training set, the LWN was defined as 
a goal of value 2 and priority 1. Large models of heavy 
computation are undesired if its implementation on a 
real time schema is wished. For this reason MC was 
defined with a goal value of 100 and priority 1. 

 
Results 
 

The MOGA run applied to the signals collected at 24 
mm yielded a set of 28 best-fitted individuals (RBFNN), 
known as Preferable Individuals (PIs). As said before 
the choice of the best model from the PIs set was based 
on the performance attained in an unseen data sequence, 
collected at 2 W/cm2, hereby referred as validation data 
sequence. In Figure 3, the Maximum absolute Predictive 
Error (MPE) in this data sequence is presented. 

 

 
Figure 3: MPE for the PIs at 24 mm distance. 
 
Observing the values of MPE’s depicted in this Figure 
the best PI is the 24, which presents a MPE of 0.49 ºC, 
an average error of 0.04 ºC and a mean squared error of 
0.013 (ºC)2. This model has 11 neurons in the hidden 
layer and its inputs are listed in Table 2. 
 
Table 2: Inputs of the best PI at 24 mm distance 

 

The MOGA optimisation objectives for that 
individual are presented in Table 3. 

The performance of the best individual during the 
validation phase is presented in Figure 4. 
 
Table 3: MOGA results for the best individual at 24 
mm. 

 

 
Figure 4: Predicted and measured temperature 
waveforms in conjunction with the associated error and 
error distribution, for the best PI at 24 mm distance. 
 

For the 48 mm experiment, the correspondent 
MOGA run yielded a set of 9 PIs. The MPEs obtained 
in the validation sequence for this distance are presented 
in Figure 5. It can be seen that the best PI is the 1, which 
presents a MPE of 0.38 ºC, an average error of 0.0072 
ºC, and a mean squared error of 0.0071 (ºC)2. This 
model contains 12 neurons in the hidden layer and its 
inputs are listed in Table 4.  

 

 
Figure 5: MPE for the PIs at 48 mm distance. 
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 Table 4: Inputs of the best PI at 48 mm distance. 

 
 

The MOGA optimisation objectives for that 
individual are presented in Table 5. 
 
Table 5: MOGA results for the best individual at 48 
mm.  
 

 
 

The performance of the best individual at 48 mm in 
the validation phase is presented in Figure 6. 
 

Figure 6: Predicted and measured temperature 
waveforms in conjunction with the associated error and 
error distribution for the 48 mm experiment. 
 
Discussion 
 

The MOGA applied to the data collected at 48 mm 
yields only 9 PIs, which have all a MPE inferior to 1 ºC, 
and two of them have a MPE inferior to 0.5 ºC. On the 
other hand, for the data collected at 24 mm MOGA 
returns 28 PIs, and 14 have MPE inferior to 1 ºC.  The 
only one model that presents a MPE inferior to 0.5 ºC is 
the best-fitted model obtained for this distance. There 
are also PIs that present an exacerbated error, showing 
its bad generalisation capacity.  

In terms of the number of neurons, the MOGA 
applied to the 24-mm experiment yielded a best model 
with 11 neurons, while the 48 mm run yielded a best 
model with 12 neurons. For both runs, the PI presenting 

MPEs lower than 1 ºC attained a number of neurons less 
than 16, demonstrating that temperature modelling for 
the applied MOGA parameterisation, and for the 
experimental setup used, would be well performed if the 
RBFNN had a number of neurons less than 16.  

The best PI for the 24-mm experiment has 13 inputs. 
The relevance of AFTUS for temperature in the 
conditions of this experiment is represented by the 
presence of 2 lags (AFTUS(k-4) and AFTUS(k-17)). The 
importance of AH1TUS and AH2TUS is marked by the 
presence of lag 3 of this variables (AH1TUS(k-3) and 
AH2TUS(k-3)), i.e. for this parameter arrangement, the 
valuable information of these variables is the one which 
is 30 seconds in the past. AIUS relevance is marked by 
the presence of 2 lags (AIUS(k) and AIUS(k-17)). In the 
best individual for the 24-mm experiment, the 
information of FIUS was completely discarded. This fact 
does not imply that the information of this variable do 
not matters for temperature modelling in the present 
conditions, it only indicates that, for this input 
arrangement, temperature prediction is well achieved 
using information from other variables, because in other 
PI the information of this variable appears as inputs. 
The importance of the bandwidth information in the best 
individual input set is represented by 3 lags (BWIUS(k-
3), BWIUS(k-6), and BWIUS(k-19)). The temporal 
position information is marked by the presence of TP(k-
1). The past memory of the system is represented by the 
presence of 3 lags of T (T(k-4), T(k-16) and T(k-17)), 
demonstrating that T(k) is dependent on the temperature 
in the past 40, 160 and 170 seconds. 

The best PI for the 48-mm experiment has 12 inputs. 
In this MOGA run the information of AFTUS, and 
AH1TUS was completely discarded from the best 
individual input set. One more time, this fact does not 
mean that its information is not important for 
temperature prediction under present conditions, it just 
means that, for this input arrangement it is not 
important, once for other PIs its information appears as 
inputs. The relevance of AH1TUS is marked by the 
presence of one lag (AH1TUS(k-1)) in the best individual 
input set, being discarded in practically all the other PI 
individuals. AIUS contributes with 3 lags (AIUS(k-11), 
AIUS(k-12) and AIUS(k-14)) to the best individual input 
set, in addition it appears in 8 of the 9 PIs marking its 
importance in this temperature prediction environment. 
The central frequency of the component originated by 
the IUS transducer contributes with 2 lags (FIUS(k-1) 
and FIUS(k-6)), being present in 5 of the PIs. The 
dependence of the temperature on BWIUS is justified by 
the presence of BWIUS(k-8). The relevance of TP is 
imposed by the presence of TP(k-4) and TP(k-13), in 
addition it information is present in 8 out of 9 PIs, 
marking it relevance. The past memory of the system is 
represented by the presence of T(k-10), T(k-15), and 
T(k-17).  

Comparing the two best individuals input set it can 
be said that the number of inputs differs in one. The 
variable lags chosen are very different, existing only 
one coincident term (T(k-17)). Although, the measured 
temperature signals for the two distances considered 
have the same behaviour, i.e. the temperature tends to 
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 increase in the heating phase and to decrease in the 
cooling phase, the TUS beam pattern are different at the 
two distances and temperature increasing and 
decreasing differently, imposing a different input 
selection. In addition, genetic algorithms are based in an 
initial population randomly generated that is evaluated 
in a probabilistic schema based on the individual’s 
performance, and the final PIs input sets are the ones 
that produce a good temperature prediction, being 
different between runs. 

Looking at Table 3 it can be said that the best 
individual for the 24-mm experiment fulfils 4 out of 6 
goals defined in the MOGA. The goals that were not 
fulfilled were the MC and the Rue. Although the goal 
defined for Rue was not fulfilled, the value attained for 
this measure is close to the defined goal. Table 5 
presents the MOGA optimisation objectives for the best 
individual at 48 mm. Looking at that Table it can be 
stated that this individual fulfils 5 out of 6 goals 
defined, the one that was not fulfilled is the MC. This 
goal was not fulfilled in both best individuals and in the 
majority of the PIs, indicating that for temperature 
prediction in the conditions used in this work good 
RBFNN must have MC≥100. 

In Figures 4 and 6 the predicted and measured 
temperature waveforms, and the error in conjunction 
with it distributions are presented for the 24 and 48-mm 
experiment, respectively. From the figures it can be 
stated that in both experiments the prediction follows 
the measurement with a maximum absolute error less 
than 0.5 ºC, and a mean error close to 0 ºC. For the 24-
mm experiment the error variance and bias is greater 
than for the 48-mm experiment. This can be explained 
by the fact that the point at 24 mm is within the beam 
near field while at 48 mm it is already the far field. At 
48 mm the beam pattern is more regular, and less noisy 
features and temperature signals were obtained.  In 
addition the results obtained are better or approximately 
equal to the ones obtained in the reference literature [2], 
for a larger prediction horizon and temperature range. 
 
Conclusions 
 

These initial results suggest that the proposed type 
of non-linear black-box model performs well for 
discrete multi-point temperature prediction in 
homogeneous media (maximum absolute error less than 
0.5 ºC). It opens the possibility of real-time monitoring 
of specific points on the tissue under therapy. The next 
step is to increment the model to multilayer 
inhomogeneous medium and try to build single models 
for multipoint temperature prediction. 
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