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Abstract: We present a method to measure spatial 
shape variability of ECG waves recorded, at a fixed 
time, from a Body Surface Potential Mapping 
(BSPM) device with 64 channels. Applications to P, 
QRS and T waves were made and evaluated on the 
ability to separate MI patients from healthy subjects. 
For each column of leads, the differences in shape 
between each couple of signals (P, QRS or T) 
associated to each couple of leads were computed 
using the Distribution Function Method (DFM). 
After selecting a reference signal in each column, all 
the shape distances were put in a vector of 61 
components, for each person. The Karhunen Loève 
Transform (KLT) was applied to the data. It was 
observed that one eigen value was highly larger than 
the others leading to one eigen vector in each group. 
Finally, the numbers used for clustering were the 
differences between the two scalar products with 
these vectors. The results show a very good 
separation of the groups according to T wave shape 
analysis, a quite good according to QRS and also for 
the P wave with a lower specificity. The results are in 
agreement with the MI diagnosis for the patients.  
 
Introduction 
 

The heart electric activity is obviously affected by 
pathologies like Myocardial Infarcts (MI), but also its 
variability from beat to beat [1, 2]. This variability 
along time is currently measured on ECGs coming from 
one or several leads. On the other hand, Body Surface 
Potential Mapping (BSPM) may be used to characterize 
heart diseases. In this case, the value of some synthetic 
index, computed from a single or averaged ECG, is 
affected to each lead. The problem is then to build the 
index in such a manner that its distribution on the body 
surface is different for healthy subjects and for patients. 
For example, the symmetry of T-waves is reflected by 
the symmetry ratio [3] or the T-wave Shape Index (TSI) 
[4], and has been used to characterize MI patients. 
Generally, the values of the index are used directly, not 
their dispersion. Another remark is that the index value 
associated to a particular lead only depends on the 
signal recorded on this lead.  
 In our approach, dealing with spatial shape 
variability of ECG waves, the data (i.e. shape 
differences) are computed for all the leads in a same 
column, and then each column is represented by a 
parameter measuring shape variability in this column. 
To build such data, two points are important: how to 

measure shape differences, and how to choose a 
reference for these differences? Then the question is 
how to make use of the data in the decision problem of 
separating healthy subjects from patients. 

 In previous works [5, 6] we showed the 
advantage of T-wave shape variability, computed 
column by column, to distinguish a group of 12 MI 
patients from a group of 15 healthy subjects. In this 
paper our aim is to propose an improvement to the 
clustering problem, introducing a Principal Component 
Analysis (PCA) through the Karhunen-Loéve 
Transform (KLT) in the space of shape difference 
vectors. The results are compared on the same records. 
 
Materials and Methods 
 

Material: Both healthy subjects and patients 
underwent BSPM according to the same protocol [7]. 
The BSPM lead system contains a total of 64 leads: 3 
limb leads and 61 unipolar leads placed around the torso 
according to the Amsterdam lead system (Fig. 1). The 
recordings were carried out in an electrically shielded 
room. The subjects where in supine position and had a 
normal sinus rhythm, apart from any episode of 
tachycardia or fibrillation. These data come from 15 
healthy subjects being used as a control population and 
12 patients after Myocardial Infarction of different 
natures. All measured signals were averaged over 100-
150 cycles, imposing a correlation of 0.98. 
 
 

 

 
 
 
Figure 1: The 64 lead device 
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 Measuring shape differences: The difference in the 
shape between two signals, here two P-waves or two 
QRS complexes or two T-waves, is calculated using the 
Distribution Function Method (DFM) [8]. This method 
was initially conceived to compare signals that are 
positive on their supports. To compare positive 
functions of the different waves, we took into account 
the absolute value, after removing a base line joining the 
first and the last point of the chosen interval. To 
compare two signals s(t) and v(t), we defined the 
normalized integrals S(t) and V(t), which are increasing 
functions from zero to one. The difference in the shape 
between the two signals was characterized by a function 
ϕ defined by the relation: 

 
 ( ) ( )( )S t V tϕ=  (1) 

 
In the case of equality of the shape between the two 
signals s(t) and v(t), ϕ  is a straight line. The shape 
difference ( , )D s v corresponds to the distance between 
the ϕ  function and the best fitted least mean square 
line∆ , using the Mean Square Error (MSE): 
 

 ( , ) ( , )D s v MSE ϕ= ∆  (2) 
 

Reference signal: In order to attribute a data 
representing a shape difference to each lead it is 
necessary to define a reference. This reference is 
determined, for each lead, using all the leads of its 
column. Two possibilities have been investigated: (i) the 
reference signal is the signal which minimizes the mean 
shape difference over the column (real wave reference); 
(ii) the reference is a synthetic signal obtained by 
Integral Shape Averaging (ISA) [9, 10], which is a 
mean shape signal (ISA signal). When equal shape 
signals are averaged, the important property of ISA 
signal is to build a signal with the same shape. This 
property is obviously not verified by the classical signal 
averaging. 
 

PCA using the KLT:  The first idea, when we wanted 
to use the KLT to separate the MI patients from the 
healthy subjects, was to work on the set of the raw data 
that is the sampled records of the ECG waves, without 
including any shape parameter [6].  In terms of 
clustering, the results confirmed the study using shape 
dispersion in a column : only the T-wave was efficient. 
In the following we propose to combine shape analysis 
and the KLT approach. 
 - The data are composed by a set of vectors Xp, 
each of them being associated to one person p (healthy 
or non healthy). Each vector has 61 components 
corresponding to the 61 leads recording body surface 
potentials, connecting all the columns in a same 
sequence. Each component is the shape difference 
between the corresponding lead signal and the reference 
signal in its proper column. 
 - For each group (healthy subjects and MI 
patients) the covariance matrix is then estimated. 

Selecting the highest eigen values leads to a basis of 
eigen vectors.  
 In our application, the first eigen value was 
very higher than the others. So, there was only one 
vector, V1, for the healthy group and one, V2, for the MI 
patients group. For a person p, noting α1(p) and α2(p) 
the scalar products of Xp respectively with V1 and V2, 
we propose to separate the both populations looking at 
the parameter: 
  
 d(p) = α1(p) - α2(p)        (3) 
 

Statistically, we are waiting for a positive value of 
d(p) if p is a healthy subject and a negative one if p is a 
patient. 
 
Results 
 

In the following we present results obtained using the 
ISA signal as reference, for they are slightly better than 
using the real wave reference.  

First, the results concern the shape variability, column 
by column, for each group, and computed on P, QRS 
and T waves. Figure 2 shows that measuring the shape 
variability of the T-waves makes it possible to clearly 
separate MI patients from healthy subjects, specially 
looking at columns 4, 5 and 6. On the contrary the 
separation does not appear on the P-wave or QRS 
diagrams. 

The second group of results is associated to data 
analysis using KLT. In Figure 3, the index d(p) is 
plotted for each person p, putting the healthy subjects on 
the left and the patients on the right, and this for each 
type of ECG wave. 

It is obvious that the index d(p) perfectly separate the 
groups using T-wave. In addition the separation is quite 
good using QRS complex, and not so bad looking at P-
wave. Table 1 gives the specificity and sensitivity for 
each wave.  

Obtaining the best results with T-wave to characterize 
the patients is in agreement with the diagnosis of 
myocardial infarction. What is new is to observe an 
increased shape variability also on the other waves, and 
this due to a better analysis of shape variability through 
a PCA algorithm. 

 
 
Table 1: Sensitivity and Specificity using KLT 
combined with shape difference measurements 
 
 

ECG Wave Sensitivity Specificity 
T-wave 100 % 100 % 
QRS complex 100 % 92 % 
P – wave 92 % 69 % 
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Figure 2: Shape dispersion using ISA as the reference in 
each column; (a) T-waves, (b) QRS complexes, (c) P-
waves   
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Figure 3: Separation using parameter d(p); (a) on T-
waves, (b) on QRS complexes, (c) on P-waves. Healthy 
subjects on the left, patients on the right. 
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 Discussion 
 
 The first point addresses the measurement of 
the spatial variability of ECG wave shapes obtained 
from BSPM records. The proposed approach, using 
DFM as a similarity criterion between two signal 
shapes, proves the reliability of shape dispersion, 
computed on each column of leads.  
 Secondly, the main point of the paper was to 
show the improvement brought by KLT combined with 
shape difference measurement. In fact, applying directly 
the KLT algorithm on raw data, i.e. the sampled ECG 
waves and not the vectors containing the shape 
information, does not lead to significant results in our 
application, for QRS complex and P- wave.  
 Finally the same approach could be applied to 
estimate shape variability from beat to beat and 
compared to earlier results published in the literature. 
 
Conclusions  
 
 In conclusion, even if the groups of healthy 
subjects and MI patients are rather small, the advantage 
of measuring the spatial shape variability of ECG waves 
from BSPM records combined with PCA has been 
established. The diversity of MI types in our example is 
an argument in favour of our approach. In fact, this 
diversity increases the uncertainty on the estimation of 
shape variability in the group of patients. Further 
applications on larger samples with more restricted 
diagnoses of MIs or other heart diseases are needed to 
study the ability of the method to characterize a 
particular pathology. 
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