
The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 FEATURE EXTRACTION EVIDENCING LONG TERM DEPENDENCIES  
FOR A BRAIN-COMPUTER INTERFACE 

 
A. M. Lazar∗ and R. Ursulean∗∗ 

 
∗University of Medicine and Pharmacy, Bioengineering, Iasi, Romania 

∗∗ Technical University, Electrotechnics and Electrical Machines, Iasi, Romania 
 

anca@scs.etc.tuiasi.ro 
 ursulean@ee.tuiasi.ro 

 
 

Abstract: The electroencephalographic signals 
(EEG), in addition to their clinical applications, can 
be used as support for direct brain-computer 
communication devices (Brain-Computer Interfaces 
BCIs). During mental imagination of specific 
movements, EEG patterns that characterize them 
emerge. Signals, recorded from sensorimotor areas 
of subjects with severe motor disabilities trained to 
use their mu rhythms (8-12 Hz) for cursor control, 
are exploited. The obtained EEG signals may be 
characterized as statistical self-similar and a 
measure for this is their fractal dimension, which 
may be computed by means of the Hurst coefficient. 
The Hurst coefficient is also used to choose the 
regularity of the wavelet involved in the BCI. Hence, 
provided that the number of vanishing moments of 
the chosen wavelet is sufficiently large the 
correlations will decay rapidly. A method using the 
continuous wavelet transform and Student t-statistic 
was proposed for feature extraction of mu rhythms. 
The complex Morlet wavelet was chosen as it has a 
good time-frequency resolution. The results suggest 
that computing the local extrema of the t-value 
scalogram of two groups may represent a good 
choice for feature detection of mu rhythms.             

 
Introduction 
 

A brain–computer interface (BCI) is a system for 
direct communication between brain and computer, 
exploiting the electrical activity of the brain for those 
persons incapable of motor functions, but having 
cognitive abilities. A BCI attempts to express the user’s 
intent by using signal processing and pattern recognition 
techniques to translate control signals into reliable 
device commands.  

The input signals may be either scalp 
electroencephalogram (EEG) or cortical potential which 
provides higher signal to noise ratio [1].  

Dealing with EEG signals analysis is not an easy 
task when one has to decide upon a strategy to develop 
a brain computer interface. There are quite a few 
characteristics of the signals representing the brain 
activities that make usual strategies to fail: 1) the signals 
are nonstationary and therefore tools like the Fourier 

transform are cumbersome, 2) some of them have 
obviously chaotic behaviour and 3) the latter contain 
statistical self-similarities (i.e. they roughly look the 
same – any section of the data set would have the same 
statistical properties as any other).  

Another feature of the EEG signals is their 
behaviour as long-memory processes. In order to detect 
such a conduct, a reasonable option is to compute the 
Hurst coefficient. This coefficient, first introduced by H. 
Hurst, is a measure of the statistical self-similarity and 
long-memory process [2]. Performing such an analysis 
is useful to detect the long memory dependencies (long-
term autocorrelations), which establish undesirable 
effects on amplitude distribution of the data. Knowledge 
of the Hurst coefficient may be a good criterion to 
choose a special kind of wavelet when performing the 
“whitening” of a time series by means of the wavelet 
transform [3]. 

A BCI can be implemented either using the 
responses of the brain to stimuli [4] (e.g. P300 
potentials) or by training the user to control his/hers 
brain waves [5], [6] (e.g. self-regulated mu and/or beta 
rhythms).  

In this paper, we focus our attention on mu rhythms 
produced by imagination of moving a cursor on a screen 
of a monitor in order to reach a target located on the top 
or bottom edge of the screen. The mu rhythm, defined 
as being a part of alpha rhythm, is an activity generated 
in sensorimotor cortex and recorded over central head 
regions in the 8-12 Hz frequency band. The mu rhythm 
decreases or desynchronizes with the movement or even 
only with the imagination of movement [7]. This 
rhythm was chosen because it is produced in those 
places which are directly related to movement and 
because it was demonstrated that a person, disabled or 
not, is capable to be trained in order to control the 
amplitude of the mu rhythm. BCIs using information 
extracted from mu and beta rhythms are considered 
independent BCIs; their operation does not depend in 
any way on the brain’s normal output pathway. The 
increases/decreases of this rhythm have already been 
used several times as a support for a BCI [1], [7].  

Effective feature characterization and extraction is 
essential for the development of a BCI. Feature 
extraction can be performed in different ways by means 
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of temporal, spectral, spatial or wavelet analysis, 
sometimes using statistical properties of the EEG 
recordings. 

We propose to exploit the high redundancy of the 
continuous wavelet transform (CWT) for precise time-
space (time-frequency) localization of the mu rhythm 
and to perform the Student’s t-test applied to the CWT-s 
of two independent samples in order to find the local 
maxima to discriminate between the movement of the 
cursor to the top or bottom of the right edge of the 
screen. 

Evidencing long-term dependencies by means of the 
Hurst coefficient is presented in what it follows. 

The complexity of self-similar structures is 
quantified by their usually non-integer fractal dimension 
[8]. Between the fractal dimension D, the topological 
dimension T (T = 1 for a time series) and the power law 
exponent γ of the spectral density, also known as “self-
similarity parameter” [9], 

 
1( )S f
f γ∝  (1) 

 
 there is a simple relationship: 
 

3
2

D T γ−
= + . (2) 

 
Another one that links the fractal dimension and the 

Hurst coefficient is given by 
 

1D T H= + − . (3) 
 
Therefore, knowing the Hurst coefficient is a 

possible approach to determine the fractal dimension of 
the EEG signals and the power law exponent. 

Let Xt be a stochastic process whose behaviour is 
known at the discrete time points t∈{0,…,N} and n a 
small number relatively to N. Let us denote by C the 
integer part of  N/n 

 
NC
n
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In other words, C is the number of subintervals of 

length n, obtained from the initial set of points. 
The limits of each subinterval are therefore given by 
 

( )1c n t cn− ≤ ≤  and { }1,...,c C∈ . (5) 
 
For every subinterval the datum is “corrected” by 

means of the slope of the process for each subinterval, 
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and, in this way, the smallest box with sides parallel to 
the coordinate axes is build. The box has obviously 

vertical axes at ( )1t c n= −  and  t cn=  and the height 
given by 
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If we denote by Sc the empirical standard error, i.e. 
 

1( 1) 1
maxc t tc n t cn

S X X −− + ≤ ≤
= − , (8) 

 
Dividing Rc by Sc corrects for the scale inhomogeneity 
in the case of a nonstationary process, as an EEG signal 
proves to be. 

The total area of the boxes, corrected for scale, 
depends on n and it is proportional to 
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Choosing the suited wavelet transform is important 

for the feature extraction used in the implementation of 
a BCI. 

Wavelets have been used in biomedical engineering 
since the end of the 1980’s. The wavelet analysis uses a 
simple idea which concerns in expanding the signal on a 
set of dilated (compressed) and translated 

functions t b
a

ψ −⎛ ⎞
⎜ ⎟
⎝ ⎠

, where a is the scale and b the time 

shift (both of them measured in units of times). ( )tψ  is 
called mother wavelet. When proper wavelet tools are 
chosen, the wavelet analysis produces better results than 
Fourier transforms methods do.  

First of all, we have to choose the type of the 
wavelet transform, the type of the mother wavelet and 
scales.     

For the first step, the decision of the type of the 
wavelet transform, we must take into account that in this 
application we are faced to detect differences from two 
EEG signals with or without mu rhythms and to use 
wavelet transform as a kind of “template matching” [4]. 
For this purpose the redundancy becomes a quality, so 
the continuous wavelet transform is well suited to be 
preferred. 

The continuous wavelet transform of a finite energy 
signal, f(t), in terms of the two variable, a and  b ( a∈(0,∞) 
and b∈R) is defined as follows [10] 

 

( ) ( )1, t bCWT a b f t
aa

ψ
∞

−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ , (10) 

 
where ψ  denotes the complex conjugate of ψ .   

The wavelet type is set according the features need 
to be extracted from the signal f(t) (shape, length and 
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smoothness). The time-bandwidth product of the 
wavelet transform is the square of the input signal and 
for most practical applications this is not a desirable 
property. Therefore one imposes some additional 
conditions on the wavelet functions in order to make the 
wavelet transform decrease quickly with decreasing 
scale. These are the regularity conditions and they state 
that the wavelet function should have some smoothness 
which is related to the number of vanishing moments R. 
Regularity is a quite complex concept and in [11] the 
author explains it using the concept of vanishing 
moments. The moments Mr of the wavelet are defined as  

 
( )r

rM t t dtψ= ∫ . (11) 
 
The number of vanishing moments of a mother wavelet 
( )tψ  is named to be the largest integer R that satisfies 

0, 0, 1rM r R= = − . The Hurst coefficient H is also 
used to choose the regularity of the wavelet. Hence, 
provided that the number of vanishing moments of the 
chosen wavelet is sufficiently large [3],  
 

2 1R H> + , (12) 
 
the correlations will decay rapidly.  

The last step, the option for scales, is linked to 
specific signal properties and based on how many 
details in what frequency range will be computed.  

The main topic in analysis of mu rhythm is to get a 
time-scale localization of components to identify the 
difference between imagination of moving toward top 
or down of one edge of a screen. The significant 
difference in 8-12 Hz band is assessed by comparing the 
mean value of each of the wavelet transforms of the two 
groups by means of a two-sample Student’s t-test (two 
independent samples to test for the null hypothesis that 
the mean values are equal [12]). If the null hypothesis is 
rejected, the statistically significant appearance of mu 
rhythms changes in time-frequency domain is 
confirmed.         

We consider two samples (groups) of Ns trials each 
and k channels of EEG recordings. 

The steps we have to follow in order to perform two-
sample Students t-test are: 

1) The ( ),knCWT a b  of the signal ( )k
nf t  is computed 

for each channel k and each trial n according to (10). 
2) The mean  ( ),k

sCWT a b  is computed for the two 
samples s as it follows 
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1

1, , , 1,2
sN

k kn
s

ns

CWT a b CWT a b s
N =

= =∑  (13) 

 
3) The variances ( ),k

s a bσ  are computed for the two 
samples s as follows 
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4) The two-sample t-statistic ( ),kt a b  is computed. 

The formula for the t-statistic is given below   
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where ( ),k

s a bσ   is the pooled standard deviation  
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of the two samples having the variances ( )2

1 ,a bσ , 
respectively ( )2

2 ,a bσ  (the channel number k was 
deliberately omitted for the sake of simplicity). The 
calculated t-statistic describes the difference between 
two samples means in standardized units.   

From the probability table of the t-statistic [12], the t 
value associated with the degrees of freedom and the 
significance level is found. This value is called the 
critical value of t, denoted by tcrit. If our calculated 
values of t lies outside the probability interval for t, then 
there is less than 5% chance the two samples means to 
belong to the same population [12].   

The local extrema ( ),k k
i ja b  of the two-sample t-

statistic ( ),kt a b  are found. At this step, we take into 
account a threshold equal to critt , this denotes the local 
extrema must be grater then critt . These points represent 
the local maxima difference between the two groups in 
the time-scale domain of the mu rhythms. 

The ( ), ,i jkn k k
i jCWT a b  (the continuous wavelet 

transform for each point ( ),k k
i ja b determined at the 

previous step) is computed and it represents the 
extracted feature for the two groups  1,2s = . 
  
Materials and results 

 
The data set was provided by the Wadsworth Center, 

New York State Department of Health [7] and 
represents records from three trained subjects (named 
AA, BB and CC),  in 10 sessions (6 labelled and 4 
unlabeled sessions), with 6 runs per session. The total 
number of trials per session was equally used for the 
four position of the target at the one edge of the screen: 
top, middle top, middle bottom and bottom. In our 
research, we used only those recording belonging to the 
cases when the subjects imagined moving the cursor to 
the top and bottom at the right site of the screen and 
they managed to reach the correct position.  The EEG 
recordings were taken from 64 electrodes, each one 
referred to the right ear. All the signals were band-pass 
filtered (0.1-60 Hz) and sampled at 160 Hz sampling 
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rate. The subjects used their mu rhythm amplitude to 
control movement of the cursor toward the position of a 
target located at the right edge of the screen. The 
detailed description of the experiment is found in [7].  

Our objective was to use the first six labelled 
sessions to study the possibility of extracting 
representative features for BCI.  

Because we are only interested in the activity of the 
motor cortex, only the electrodes around the 
sensorimotor cortex, FC3, FC1, FCz, FC2, FC4, C3, C1, 
Cz, C2, C4, CP3, CP1, CPz, CP2, CP4, were chosen 
[13]. For all the three subjects, only two of the 15 
chosen channels were used as the mu rhythm in these 
channels had the largest peak in power spectral densities 
and the significant difference between power spectral 
densities of the two positions of the target.        

Data sets from all the subjects were used to compute 
the Hurst coefficient and the algorithm presented above 
was implemented. The changes for the coefficient were 
not significant from one subject to another, as can be 
seen in Table 1 in the case of the C3 and Cp3 signals. 
The second subject presented slightly higher values of 
the Hurst coefficient for the C3 signal. 

 
Table 1: The Hurst coefficient and the fractal dimesion  
 

Subject Signal 
Hurst 

coefficient 
H  

Fractal 
dimension 

D 
AA C3 0.241 1.759 
AA Cp3 0.23 1.769 
BB C3 0.356 1.644 
BB Cp3 0.277 1.723 
CC C3 0.275 1.725 
CC Cp3 0.27 1.73 

 
As a general observation, the values of the Hurst 

coefficient are significantly different from 0.5 which 
characterize a random signal. This is also a good 
indicator that “long memory” effects influence the 
signals. 

The fractal dimension for the same task is also 
presented in Table 1. It can be seen that except for the 
BB subject in the case of signal C3 the fractal 
dimension of the recordings are different with less than 
5%. This could be a measure of the accomplishment of 
the task when dealing with a “focused” demand.  

The values of the fractal dimension of the time series 
for all the tasks led to the conclusion that the system 
that generated them has a manifest tendency towards a 
scale-free behaviour. Due to the long range correlations 
generated locally, the whole system operates in a critical 
state. This phenomenon was defined in [8] and [9] 
although for another type of system. 

A complex Morlet wavelet is defined by 
 

21( ) exp 2 c
bb

xx jF x
FF

π
π

⎛ ⎞
Ψ = −⎜ ⎟

⎝ ⎠
. (17) 

 

It depends on two parameters: Fb is a bandwidth 
parameter, Fc is a wavelet center frequency.  

As the complex Morlet wavelet no.1-1.5 has a good 
time-frequency resolution [4], [10] and the number of 
vanishing moments is R=2 we use it as the mother 
wavelet.   

The continuous wavelet transforms ( ),knCWT a b  
and the means of modulus of complex-valued wavelet 
transform, ( ),k

sCWT a b , of the groups were computed 
for each of the trials for the two groups. We have 
limited in the region of 8-12 Hz.   

In figure 1 the t-value scalogram of mu rhythm for 
one of the three subjects was represented (channel CP3 
and C3).  

 

 
(a) 

 
(b) 

Figure 1: T-value scalograms of mu rhythm (a) CP3 
channel and (b) C3 channel (subject AA) 

 
For CP3 channel, there is obvious that there are time 

domains where the t-value scalogram has high values 
(e.g. at 0.4-0.5 s and 1-1.2 s for the frequency domain 
around 11.5-13 Hz and at 1.25-1.35 s for the frequency 
domain nearly 9.5-13 Hz of the mu rhythm). As for C3 
channel, the value are higher then for CP3 and the 
localization in time domain for frequencies of the mu 
rhythm is a little different, especially in 0.65-0.75 s time 
domain and 8.5-10 Hz in frequency domain.  
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Further, the scalogram of the difference average of 
the continuous wavelet transforms for top and bottom 
was displayed in figure 2. There are some distinctions 
between the t-value and difference average scalograms. 
So, for channel CP3, one late maximum at about 2,1 s in 
the difference average is not found by the t-value 
scalogram. For both channels, better time-frequency 
localization is acquired by the proposed method than by 
the difference average scalogram.      

 

 
(a) 

 
(b) 

 
Figure 2: Difference average scalograms of CWTs:  (a) 
CP3 channel and (b) C3 channel (subject AA) 

 
The local extreme ( ),k k

i ja b of the two-sample t-

statistic ( ),kt a b  are found and the ( ),knW a b  is the 

extracted feature representing the ( ),k k k
s i jCWT a b , that is 

all the values of the ( ),k
sCWT a b   are 0, except those for 

which there were found extreme. At this step, we take 
into account a threshold equal to 1.6002critt =  [12], for 
95% confidence interval. These points represent the 
local maxima difference between the two groups in the 
time-scale.  In figure 3 the features extraction for top 
movement of the cursor for CP3 and C3 channel is 
shown.    

 

 

 
(a) 

 
(b) 

 
Figure 3:  Feature extraction (a) CP3 channel and 
(b) C3 channel (subject AA) 

 
Conclusions 
  

Choosing the right parameters of the wavelet is 
accomplished by means of computing first the Hurst 
coefficient and the fractal dimension of the signals. This 
led to a better possibility of feature extraction due to the 
lower correlation coefficients between the signals.   

The combined two methods proposed for feature 
extraction, the continuous wavelet transform using 
complex Morlet wavelet and the Students’ t-test, applied 
to EEG signals, pointed out the possibility of 
quantification of mu rhythms that best discriminate 
between the two opposite groups: one for mental 
imagination of moving the cursor to the top and the 
other to the bottom of one edge of a screen of a monitor.  
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