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Abstract: A number of biomechanical models of the
breast have been developed to enable accurate lo-
cation of suspicious features using multiple imaging
technologies. Mammograms provide 2D representa-
tions of highly deformed 3D breasts. Accurate co-
location of suspicious features from multiple mammo-
grams is a non-trivial task. In this work, we present a
novel method based upon the physics of large defor-
mation mechanics to interpret mammogram contain-
ing suspicous features in order to accurately co-locate
them in 3D space.

Introduction

There exist a number of screening and diagnostic
tools available for breast cancer. Mammography is cur-
rently the gold standard for its highly sensitive nature in
detecting carcinomas containing microcalcifications [1].
However, mammograms are 2D representations of a 3D
object, and each mammogram is taken with a different
deformed breast state (typically mediolateral-oblique and
cranio-caudal views are used). These limitations pose
difficulties for clinicians attempting to accurately locate
suspicious masses in the undeformed breast state.

In this study, we present a novel method to interpret
mammograms using a biomechanical model based on the
laws of physics in order to predict the location of an ab-
normal mass from mammograms in 3D space. Phantom
studies using a homogeneous and isotropic deformable
material are validated against experimental results.

Biomechanical Model of the Breast

During mammographic procedures, a patient’s breast
undergoes strains of up to 50%. In order to model such
large deformations of the breast, finite elasticity theory
must be used to accurately describe the kinematics of tis-
sue movement. In this section, a brief summary of the
theory is depicted. Readers are referred to [2] and [3] for
details.

Kinematics

Let us assume that a deformable body undergoes a
general motion, from a reference (or stress-free) state
with coordinatesX to a deformed state with coordinates
x. The deformation gradient tensorF maps a line segment

in the reference configuration into a line segment in the
deformed configuration, where

F =
∂x
∂X

(1)

Using this deformation gradient tensor, we can define
theGreen-Lagrange strain tensor,E, where

E =
1
2

(
FTF− I

)
(2)

where I is the identity matrix. Calculation of stress
tensors may be achieved by differentiating a strain energy
functionW with respect toE.

Constitutive Laws

SylgardR© silicon gel (Dow Corning, USA) was
used to create a phantom model of the breast to vali-
date our computational compression studies. Previous re-
search [4], [5] has shown that the neo-Hookean constitu-
tive law accurately represents the mechanical behaviour
of this incompressible, isotropic gel. For such a material,
the strain energy functionW is defined as

W = c1 (I1−3) (3)

wherec1 is determined experimentally andI1 is the
1st invariant (trace) ofFTF.

The 2nd Piola-Kirchhoff stress tensorS is evaluated
by differentiating the strain energy function with respect
to theGreen-Lagrange strain tensor,E.

S=
∂W
∂E

(4)

We enforced first derivative continuity of both geom-
etry and deformation by using cubic-Hermite interpola-
tion functions. This approach ensured that the stress and
strain fields remained continuous, improving the rate of
solution convergence [6].

Governing Equation: Principle of Virtual Work

The equations of motion can be obtained by balancing
forces acting on the body

divσ +b = ρü (5)

whereσ is the Cauchy stress,b is the body force,ρ is
the density and̈u is the acceleration. The Cauchy stress
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 can be evaluated using the2nd Piola-Kirchhoff stress ten-
sor found in equation (4)

σ =
1
J

FSFT (6)

whereJ=det(F)

The principle of virtual work is used to convert this
strong form of the governing equations into a weak form,
expressed in terms of integrals rather than differential
equations. In this form, numerical methods such as the
finite element method can be used to solve equations.

∫

s
t ·δuds+

∫

v
b ·δudv=

∫

v
σ :

∂ (δu)
∂x

dv+
∫

v
ρü ·δudv (7)

whereδu is the virtual displacement andt is the sur-
face traction. Note that the integrations are performed on
the current configuration (surfaceds or volumedv). For
a quasi-static problem, the term on the right-hand side
involving the acceleration is neglected, and we obtain a
nonlinear residual equation,

R =
∫

v
σ :

∂ (δu)
∂x

dv−
∫

s
t ·δuds−

∫

v
b ·δudv= 0 (8)

This system of residual equations may be solved us-
ing nonlinear iterative algorithms such as the Newton-
Raphson method. The tangent stiffness matrix,K may
be approximated using finite difference estimates of the
residual derivatives

Kmn≈ Rm(xi +∆en)−Rm(xi)
∆en

(9)

The deformed geometry,x, is initially set toX and
the next set of solutions are calculated by adding the de-
formation incrementu to the currentxi . The deformation
increment is calculated by solving

Ku =−R(xi); xi+1 = xi +u (10)

This process is repeated until equation (8) satisfies a
set of error conditions.

Contact Mechanics

It is difficult to track material points of the breast
tissue during mammographic compression. Hence we
cannot apply simple displacement boundary conditions.
To cope with unknown boundary displacements, we
used contact mechanics based upon a frictional cross-
constraint method. The residual equation in equation (8)
is modified with contact constributions by

Rglobal = R−
∫

Sc
fN(δuslave−δumaster) ·ndSc

−
2

∑
α=1

∫

Sc
fTα (δuslave−δumaster) · tαdSc (11)

where Sc is the slave or contact surfaces (deformable
breast),n is the normal vector at the master surface (rigid
plates) andtα are two tangential vectors at the master sur-
face. The normal forcefN and the tangential forcesfTα
are evaluated as defined in [7].

Phantom Studies: Validation of Cranio-caudal and
Mediolateral Compressions

We conducted a series of experimental studies on a
silicon gel phantom in order to validate our model pre-
dictions against the experimental surface-scanned data.
We used a simplified symmetric geometry (see Figure 1,
width = 80 mm, depth = 120 mm, height=160 mm). The
material properties of the silicon gel had been estimated
in [8], where a neo-Hookean material law was used with
c1 = 0.426 kPa. Each mammographic compression was
simulated using this material law, and compared against
the experimental surface geometry recorded using the
FASTSCANTM (Polhemus, UK).

Cranio-caudal (CC) compression

CC compression was performed with the phantom
placed in a supine orientation. Two rigid plates were used
to compress the phantom to 50 mm thickness (37.5%
compression). Figure 1 depicts the simulation result and
its comparsion with the surface data of the compressed
phantom.

Figure 1: The phantom in supine position subject to CC
compression. Left: the undeformed configuration. Right:
the compressed model (surface) with the surface-data
scanned from the experiment (dots).

The global root-mean-squared (RMS) value between
the predicted deformed surface and the recorded data
points was 1.61 mm for the CC compression.

Mediolateral (ML) compression

ML compression was performed with the phantom
oriented on its side. ML compression was preferred to
mediolateral-oblique (MLO) compression for this phan-
tom study due to its geometric symmetry in the medio-
lateral direction. The phantom was compressed to 50 mm
thickness (37.5% compression). Figure 2 depicts the sim-
ulation result and its comparsion with the surface data of
the compressed phantom.
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Figure 2: The phantom oriented on its side subject to ML
compression. Left: the undeformed configuration. Right:
the compressed model (surface) with the surface-data
scanned from the experiment (dots).

The global RMS value between the predicted de-
formed surface and the recorded data points was 1.65 mm
for the ML compression.

Interpretation of Mammograms Using The Biome-
chanical Model: A Demonstration

From the compression simulations, we generated ar-
tificial mammograms from each of the deformed mod-
els. Let us assume that an abnormality (5 mm by 5 mm)
was identified in both mammograms, as illustrated in Fig-
ure 3.

Figure 3: Simulated CC (left) and ML (right) mammo-
grams generated from the simulation results. An abnor-
malities (white square) is included.

We can thus identify a set of material points which
are possible candidates for this tumour on each deformed
breast model. Locations of these points are tracked to the
undeformed breast state, according to the underlying laws
of physics used to simulate the deformations (Figure 4).

This will give two sets of material points within the
undeformed phantom that are candidates for the abnor-
malty. Then the tumour may be localised by simply tak-
ing the intersection of the two candidate sets (Figure 5).

With this information, we can simulate any other de-
formation required for other image modalities, such as
MRI, CT, and ultrasound, and track the located tumour
in the deformed breast geometry through a simple for-
ward solution. For example, a patient’s breast may be in a

Figure 4: Top: set of material points corresponding to the
region of interest shown in the simulated CC mammo-
gram (left) and their locations in the undeformed breast
(right). Bottom: similar procedure as above, but for ML
mammogram.

Figure 5: Left: The set of abnormality candidates iden-
tified from the mammograms, in the undeformed phan-
tom geometry. Right: The intersection of these sets is the
unique mass.

prone position during a magnetic resonance (MR) imag-
ing procedure and such a deformation can be predicted
using this model to accurately determine the 3D location
of the tumour (Figure 6).

Discussion

In this study, a modelling framework has been pro-
posed to interpret mammograms using an accurate bio-
mechanical model. We have demonstrated the accuracy
of the model to simulate mammographic compressions
(CC and ML) by comparison with experiments on phan-
toms. Using the model predictions for both compressions,
CC and ML mammograms were artificially generated
with a manifest abnormality. The material points in each
deformed state, due to the abnormalty, were tracked to
the locations in the undeformed breast geometry. The ab-
normalty was localised by taking the intersection of the
tracked material points.

It is important to note that the set of material points in
the deformed breast becomes warped in the undeformed
breast. Clinically, lesions are localised by using a per-
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Figure 6: Tracking the tumour (dots) in the breast un-
der prone-gravity loading conditions (left) and also under
supine-gravity loading conditions (right) from the unde-
formed unloaded breast state (top). Arrows indicate the
direction of gravity acting on the model.

forated or marked compression plate [1]. The point of
needle insertion on the skin is chosen according to the
coordinates of the tumour in each of the mammograms
with reference to anatomical markings (usually the nip-
ple). The needle is then inserted beyond the depth mea-
sured from the CC mammogram. The warping of the ma-
terial points in the undeformed breast indicates that the
current clinical approach of localising tumours might not
be appropriate and needs to account for this warping ef-
fect due to the compressive deformation.

We are in the process of validating this registration
method, by inserting a foreign material into the phantom
to mimic the presence of a tumour. Evaluation of its lo-
cation in the undeformed phantom will require the use
of imaging techniques such as MR. These phantom stud-
ies will provide the foundations for this tumour tracking
technique. Further validation studies are required in order
to account for greater anantomical realism, such as the ef-
fects of skin, different breast tissue material properties,
and patient-specific breast geometries. These anatomi-
cally realistic details will be built into the phantom stud-
ies, making them more relevant for clinical purposes.
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