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Abstract: An Artificial Neural Networks (ANNs) 
based method, for the automatic and real-time 
optimization of patient set-up in breast cancer 
radiotherapy, is proposed. With respect to 
commercial passive marker-based systems and 
constrained surface registration procedures, the 
proposed ANNs algorithm was designed to detect 
and correct patient misalignments by using laser 
spots projected on breast surface as fiducial points. 
The method features generalization capabilities 
related to inter-session and intra-session 
modifications of the irradiation target. The 
technique was validated through simulation 
activities, based on clinical data, with great 
adherence to the clinical scenario. Results show that  
both the non-deterministic nature of ANNs and the 
model-specific training modalities ensure great 
generalization capabilities of the algorithm, 
compared to the other repositioning methods, 
leading to a high reliability in patient positioning 
correction: median±quartile measures of 3-D 
displacements, affecting the whole set of control 
points, were reduced from the initial value of 
9.86±5.26 mm up to 3.01±2.60 mm.  
  
 
Introduction 
 

The most important challenge in radiotherapy 
treatments is to accurately deliver a specific dose of 
radiation to a predefined target volume. This can be 
achieved only with the precise positioning of the 
patient, during each therapy session, with respect to the 
radiotherapy system.  

Conventional methods for patient repositioning and 
immobilization are mainly based on laser centering 
lines, skin tattoos and personal frame systems; 
nowadays, optoelectronic techniques are available in 
clinical practise to monitor, in real-time, the location of 
external fiducials, which are light reflecting passive 
markers, on the patient treating area. The position 
correction requires the minimization of the current 
marker configuration with respect to a corresponding 
reference one. As drawbacks, these methods require 7-8 
markers at least: consequently, it is necessary to spend 
time in order to accurately replace the control points on 

the patient’s skin, at each therapy session. Moreover, 
they are based on the strong assumption that the internal 
structures are stiffly connected with the external surface, 
thus do not considering the effects of organ motion due 
to the breathing movements. 

Recently, new techniques based on the detection of 
the entire irradiated body area have been proposed in 
order to account for surface morphological changes 
[1,2] and to increase the number of control points. Other 
methods are based on the acquisition of under sampled 
surface by using laser spots projected on the patient skin 
[3,4]. In this case two passive markers are used to 
guarantee the convergence of the registration algorithm. 

In this paper, a non deterministic method based on 
Artificial Neural Networks (ANNs) is described. The 
technique implies the use of only laser spots as surface 
control points as if they were passive markers, but 
without requiring the presence of real fiducial passive 
markers, thus reducing time and errors related to 
markers replacement on selected skin landmarks. 
Moreover its non-deterministic nature allows the 
correction of the errors due to patient’s breathing 
movements. 

The method was tested through simulated activities 
reproducing the typical clinical conditions.   

 
Materials and Methods 

 
The breast surface model was obtained from the CT 

of the treatment planning system.  
CT data (5 mm slice thickness) of 4 subjects, 

enrolled in this study and treated for breast cancer 
radiotherapy at the Istituto Europeo di Onclogia (IEO, 
Milan), were processed with a commercial software 
(Amira™ 3.1.1, TGS Inc.), in order to reconstruct breast 
surface models. A threshold, based on the Hounsfield 
scale, was used by the marching cubes algorithm [5] to 
build the iso-surface corresponding to the patient’s 
external body surface; a detailed surface model was 
generated in this way and it was typically composed of 
10000-15000 triangles per model. 

Two CT scans of one patient treated for left breast 
carcinoma, acquired in free breathing (FB) and deep 
inspiration breath hold (DIBH) conditions, were 
registered and processed (see figure 1) in order to 
evaluate the radial surface displacement due to the 
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 patient breathing. Analyzing these data, a geometrical 
surface deformation tool was implemented to mimic 
intra-session target motion and deformation. The 
algorithm was developed in MatLab® environment 
(MatLab® version 6.5, The MathWorks, Natick, MA) 
and it was applied to each model.  

 

 
 

Figure 1: FB and DIBH CT slices registration   
 
The configuration of laser spots on the surface was 

defined by means of a simulated experimental set-up of 
10 laser beams. The generated laser spots in reference 
conditions (Virtual Markers, VMr) were considered 
solid with the 3D surface and used as verification points 
for the evaluation of the neural algorithm performances 
(see figure 2).  

 

 
 

Figure 2: The reconstructed model and the simulated 
laser spots for reference dataset 

 
A set of 10 Artificial Neural Networks (one for each 

laser spot) was trained. The nets inputs were  the current 
laser beams intersections (lc) with the surface model, 
while the nets outputs were the current 3D coordinates 
of Virtual Markers (VMc). 

Every net was a multilayer perceptron with a single  
hidden layer of 24 neurons (see figure 4). The output 
layer was made by 3 neurons, one for each cartesian 
coordinate (X, Y and Z) of each  VMc.  The networks 
were organized in a cascaded-forward architecture: the 
first layer had weights coming from the input; each 

subsequent layer had weights coming from the input of 
all previous layers. 

 

 
 

Figure 2: Misalignments surface model (current model) 
and nets INPUTS/OUTPUTS 

 
The network training function updated the neurons 

weight values according to the Levenberg-Marquardt 
optimization algorithm [6]. 

 

 
 

Figure 3: Networks architecture 
 
The ANNs training dataset was generated by 

applying 2000 random 6-dofs rototranslations to the 
reference surface model. Range of linear and angular 
displacement was ±10 mm and ±6°. 

For each model, two training dataset were generated: 
in the first case, no model deformations were considered 
(undeformed training), in the second case, 8 breathing 
deformation patterns were included in the training 
procedure (deformed training), simulating patient 
respiration from deep expiration to deep inspiration. 
Non-rigid deformation ranged from – 8mm to 12 mm 
with respect to the mean respiration level. With the 
same modalities testing dataset was generated 
(undeformed testing and deformed testing).  

In order to simulate patient position correction the 
ANNs output was fed to an iterative procedure, which 
was designed to estimated the best set of roto-translation 

Current model 

Current laser-model 
intersections (lc): networks 
input 

Current virtual 
markers 
(networks output) 

corrective movements (in a least-squares sense) for the 

Reference model 

Laser spots 

Reference Virtual Markers VMr  

lc1  lc2   …    lc10 

VMc1            VMc2              …                
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 Table 2: Root mean square error between desired 
and nets estimated outputs when surface model 
deformation is considered. 

minimization of the displacements between reference 
and ANNs predicted current Virtual Markers.  

The networks performances were evaluate by 
com

esults 

In table 1 and in table 2 RMSE values are showed 
for 

able 1: Root mean square error between desired 
and

  Patient 1 Patient 2 Patient 3 Patient 4 

puting the root mean square error between the 
desired and the networks estimated outputs. The model 
position correction after the application of minimization 
procedure was checked by calculating the residual 
errors on the estimated VMc. Non-parametric statistical 
tests were applied (Wilcoxon signed rank test). 
 

 

R
 

undeformed and deformed testing. 
 
T
 nets estimated outputs when non morphological 

changes are considered.  
 

RMSE [mm] 1.13 2.26 1.64 0.99 
RMSEs[mm] 0.13 0.08 0.12 0.08 
RMSEr[mm] 1.12 2.25 1.62 0.98 

Model Mild Mean Mild 
Patient

Err [mm] 
Expir. 

Expir.  Resp. Inspir.
Inspir.

RMSE 1.88 1.35 1.07 1.07 1.35
RMSEs 0.75 0.46 0.20 0.17 0.501 

RMSEu 1.73 1.28 1.05 1.05 1.25
RMSE 2.37 1.87 1.71 1.65 1.82
RMSEs 1.08 0.43 0.27 0.25 0.492 

RMSEu 2.11 1.82 1.69 1.63 1.76
RMSE 1.93 1.39 1.33 1.43 1.66
RMSEs 0.63 0.24 0.13 0.33 0.59

 
3 
 RMSEu 1.83 1.37 1.32 1.39 1.55

RMSE 2.84 1.44 0.93 0.94 1.50
RMSEs 2.40 1.06 0.38 0.40 1.16

 
4 
 RMSEu 1.51 0.97 0.85 0.85 0.95

 
Efficiency of the whole methodology in detecting 

and correcting position, after the application of the 
patient corrective parameters estimated by the least-
squares iterative procedure, was tested.  

 
Root mean square error was decomposed in its 

ran

conditions, the systematic 
com

ase of deformed testing, worst result were 
fou

dom (RMSEr) and systematic (RMSEs) component, 
being this latter related to possible algorithm bias, as 
described Willmott et al. [7]. 

Under undeformed testing 

Figure 4 shows median±quartile values, computed 
on the 100 testing examples, of initial and residual 3-D 
displacements affecting control points of patient 2 and 
patient 4, which were the worst and the best case 
respectively for undeformed testing.  

ponent of RMSE resulted always less than the 
random one: the maximum value was 0.13 mm for 
patient 1.  

In the c
In figure 5 results concerning deformed testing 

datset are plotted. Wilcoxon signed rank test for pair 
data confirmed significant 3-D displacements reductions 
for virtual markers with p<1e-6. 

nd only for patient 4 when maximum expiration and 
inspiration conditions were simulated.  

  
  

 

 
 

Patient 3

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

no. virtual marker

di
sp

la
ce

m
en

ts
 [m

m
]

Patient 4

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

no. virtual marker

di
sp

la
ce

m
en

ts
 [m

m
]

Initial

Corrected

25%-75%

Median

Figure 4: Comparison between 3-D initial and residual displacements affecting the virtual markers estimated by 
networks (undeformed testing dataset). 
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Figure 5: Comparison between 3-D initial and residual displacement affecting the virtual markers estimated by 
networks for different breathing levels (deformed testing dataset). 
 
Discussion 
 

In this paper an original ANNs procedure, for 
patient positioning in radiotherapy, is proposed. The 
method represents an innovative and efficient trade-off 
between position control techniques based on physical 
passive markers [8] and technologies based on 
anatomical surface detection and registration by means 
of thousands of light spots [2].  

The technique was tested by simulating the 
detection and the correction of misalignments of four 
3D surface models built from real CT data. 
Morphological surface model deformations were 
included in the networks training dataset, in order to 
assess the generalization capabilities of the algorithm.  

The principal aim of the described methodology 
was to predicted, at each therapy session, the position 
of the current verification points, which were laser 
spots acquired only at the treatment planning time, as 
they were solid with the surface. Then, a least-squares 
iterative procedure was applied to perform the 
registration between the reference point configuration 
and the current-estimated one, in order to obtain patient 
position corrective parameters. Since the virtual 
markers were laser spots projected on the patient 
treated area, their number could easily increase, 
without interfering with the clinical practice and 
guarantying better registration performance. 

Results confirm the great generalization capabilities 
of the algorithm in estimating current virtual markers 
location. This is valid, even when non-rigid surface 
deformations, simulating patient breathing effects, are 
included. The method turns out to be flexible, in terms 
of control point number, and provides real-time output 
after ANNs training.  

 
Conclusions  

 
We can conclude that the proposed technique 

represents a competitive alternative to surface 
registration procedure and patient position control 

based on passive markers. The next step will be to test 
the efficiency of the method for the clinical application 
to definitely validate the entire procedure. 
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