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Abstract: A system to provide automated reading 
assistance during reading within a natural setting is 
described. The system detects when a reader 
encounters an unknown word, and immediately 
responds by vocalizing the word. The system allows 
for unrestricted head movement and motion of the 
reading material. In a pilot study with two subjects, 
the system provided assistance for 9 out of 10 
unknown words and 1 out of 10 known words. 
 
Introduction 
 
 During reading, we visually examine text and 
convert letters to sounds via cognitive processing that 
activates word recognition. When we encounter an 
unknown word, we apply learned conversion rules to 
map graphemes (letter units) to phonemes (sound units) 
[1]. However, unskilled readers may experience 
difficulty performing this conversion. Furthermore, 
many English words do not conform to standard 
conversion rules. Hence, it is desirable to hear unknown 
words pronounced to learn the proper letter to sound 
mappings. We describe a system that automatically 
detects when readers encounter an unknown word, and 
renders immediate assistance by vocalizing the word. 
We validate the system through experimentation in 
which subjects read from reading cards similar to cards 
used in language instruction. 
 
Principle of Operation 
 
 According to the dual-route model of reading, visual 
word recognition is facilitated by two separate 
processing routes [2]. In the lexical route, the word’s 
letter units are processed visually in parallel and a 
match is found within the reader’s orthographic lexicon, 
containing all words the reader knows. In effect, the 
word is recognized as a single unit, rather than through 
a visual examination of its individual letters. A mapping 
from the orthographic lexicon to the phonological 
lexicon, i.e. from a word image to a pronunciation, is 
then performed. In the non-lexical route, a letter string 
is converted into a phoneme string via a grapheme-
phoneme conversion governed by a set of mapping 
rules. 

The lexical route is generally faster since each word 
is recognized as a whole. However, when the word is 
unknown to the reader, and thus not within the reader’s 
orthographic lexicon, the lexical route fails and the 
reader must resort to the non-lexical route. The 

difficulty to pronounce an unknown word is evidenced 
by a longer processing time. To measure processing 
time we use a point-of-gaze estimation system. When 
processing time exceeds a predetermined threshold, the 
reading assistance system assumes that an unknown 
word has been encountered, and provides assistance in 
the form of automated vocalization of the viewed word. 
 
System Description 

 
An automated reading assistance system requires the 

following components: a means to measure per-word 
processing time during reading, a means to set the 
threshold that defines when an unknown word has been 
encountered, and a means to provide vocalization of 
words. In this section we describe a method to 
determine the processing time associated with each 
word. 

To determine the viewed word during reading while 
allowing unrestricted head movement, we use a head-
mounted eye-tracker along with a head-mounted camera 
[3, 4]. This camera captures images of the subject’s 
field of view; in the discussion to follow, we refer to 
this camera as the scene camera. When using head-
mounted eye-trackers, eye position is generally 
measured with respect to a coordinate system defined 
relative to the head (head coordinate system). The 
position of the scene camera’s imaging plane within the 
head coordinate system is constant, yielding a constant 
relationship between the head coordinate system and the 
scene camera’s image coordinate system. This allows 
eye position to be easily transformed to a point-of-gaze 
within the scene camera’s image coordinate system. 

Using this method, point-of-gaze is estimated with 
respect to a moving reference frame as the head moves. 
However, points of interest in the scene, such as the 
position of words on a reading card, are defined with 
respect to an object coordinate system that does not 
move, or moves independently of the head. Therefore, 
to identify what the subject is looking at, the 
relationship between the scene camera’s image 
coordinate system and the object coordinate system 
must be determined to allow the point-of-gaze to be 
mapped to the reference frame of the points of interest. 
We determine this relationship by establishing 
correspondences between points in images obtained by 
the scene camera (containing projections of the reading 
card) and points on the reading card defined in the 
object coordinate system. 
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 The head-mounted eye-tracker was implemented 
based on the principle of tracking the pupil centre and 
corneal reflections (glints) to estimate eye position [5, 
6]. The eye-tracker consists of a PC-based processing 
unit and an imaging unit mounted on a head-band 
carrying an eye-tracker assembly and a scene camera. 
The eye-tracker assembly consists of three primary 
components: a small infra-red (IR) CCD video camera 
(eye camera), two IR light-emitting diodes (LEDs), and 
a hot mirror that allows visible light to pass through 
while reflecting IR light. The two IR LEDs are mounted 
above the right eye; light is reflected by the angled hot 
mirror onto the eye, providing illumination and 
generating the two corneal reflections. Images of the 
eye are reflected by the hot mirror up to the eye camera 
which is also positioned above the eye. The scene 
camera has a field of view of 92.1°H × 69.1°V. A 
photograph of the eye-tracker is shown in Figure 1. 

 

 
 
Figure 1: Head-mounted video-based eye-tracker 

 
Images of the eye are processed at a rate of 50 Hz to 

locate the corneal reflections and the pupil centre. The 
relative positions of these eye features are used to 
estimate the point-of-gaze on the scene image. 

The mapping of point-of-gaze from the scene 
camera’s image coordinate system and the object 
coordinate system can be described in terms of 
projective geometry. Using homogenous coordinates, an 
arbitrary 3D object point M = (X, Y, Z, 1)T is related to 
its a 2D image point m = (x, y, 1)T via the linear 
mapping described by a 3×4 projection matrix P: 

  
Sm = PM     (1) 
 

where S is an arbitrary scalar [7]. Using a pinhole model 
of the scene camera, and assuming that all points M are 
located on the 2D surface of a reading card, defined by 
the Z=0 plane of the object coordinate system, the 
mapping may be simplified to: 
 
 Sm = HM '      (2) 
 
where H is a 3×3 homography matrix, and M '  = (X, Y, 
1) T describes the point M on the reading card for which 
the Z-coordinate is zero and is omitted [8]. Given N ≥ 4 
point correspondences, Mi '  ↔  mi, i = 1…N, and the 
constraint that no N-1 of the N points are collinear, it is 
possible to calculate H. We employ the Direct Linear 

Transformation (DLT) algorithm to solve for H [7]. A 
point-of-gaze estimate POGimage = (ximage, yimage, 1)T, 
described in the scene camera’s image coordinate 
system is then mapped to POGobject = (Xobject, Yobject, 1)T, 
the corresponding position on the reading card 
described in the object coordinate system using the 
relation: 
 
 POGobject = SH-1 POGimage.   (3) 

 
 The task of automatically determining corresponding 
points between objects within a scene and its image is a 
classic problem in machine vision and photogrammetry 
commonly referred to as the correspondence problem 
[9]. A common approach to automating the 
measurement and identification of image points is to 
place coded targets within the scene [4, 10]. We adopt 
an approach using N circular coded targets, which are 
placed on the 2D surface of the reading card at known 
positions Mi ', where i = 1…N, and N ≥ 4. During 
reading, the scene camera captures images of the 
reading card and the coded targets from which the pixel 
positions of the targets, mi, are estimated. This 
establishes the N point correspondences from which H 
is calculated. Figure 2 shows a sample reading card 
displaying four targets.  
 

 
 

Figure 2: Sample reading card 
 
 In the context of a reading assistance system, 
reading cards must also be uniquely identified to allow 
more than one card to be used. Figure 2 shows the 8-bit 
barcode affixed to each reading card. This barcode is 
automatically extracted from the scene image during 
reading, and is decoded to identify the reading card 
being viewed. 

After the reading card is identified, a lookup table 
containing the reading card’s words is consulted. This 
table describes the position of each word with respect to 
the object coordinate system of the reading card. The 
viewed word is determined as the word that matches the 
position of the point-of-gaze, POGobject. 
 
Design of the Reading Card 
 

For proper identification of the viewed words, words 
on the reading card must be separated by a distance 
greater than the resolution of the reading assistance 
system. The resolution is affected by two components: 

scene camera eye camera 

IR LEDs 
hot mirror 
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 (a) the accuracy of the point-of-gaze estimate, and (b) 
the accuracy of the mapping from the scene camera’s 
image coordinate system to the object coordinate 
system.  

The mapping method presented above assumes that 
the scene camera is an ideal pinhole camera. In practise, 
mapping errors are caused by non-linear lens distortions 
and measurement noise. Hence, the measured image 
point T

i i i = (x  y , 1),m  will deviate from the theoretical 
image point mi = (xi, yi, 1)T, and this error will 
propagate to the homography matrix H.  

To evaluate mapping performance in a typical 
experimental setup using reading cards (Figure 2), we 
constructed a validation card containing 9 targets 
(Figure 3) located at known object coordinates Mi ' (i = 
1…9). The card was held in a typical reading pose and 
imaged by the scene camera. Head movements and 
reading-card movements were made to simulate the 
motions expected during a reading task. A sequence of 
1000 scene images was captured and the image 
coordinates of the targets im  (i = 1…9) were recovered 
from each image. 

 

 
 
 
Figure 3: Validation card containing nine circular coded 
targets 
 

For each image, the four point correspondences at 
the corners of the validation card, Mi ' ↔  im  (i = 
1…4), were used to estimate the homography as H . 
These four targets serve the same function as the targets 
shown in the sample reading card. The computed 
homography was used to map the remaining five image 
points im  (i = 5…9) to the corresponding reading 
material points -1H im . Using the sequence of 1000 
scene images, a total of 5000 points were mapped in this 
manner. For each mapped point, a mapping error, 
defined as the Euclidean distance between Mi ' and 

-1H im  (i = 5…9), was calculated. Figure 4 shows a 
histogram of the mapping errors. 
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Figure 4: Histogram of mapping errors 
 
The RMS mapping error for the 5000 points was 

found to be 2.29 mm. More than 98% of the points 
yielded a mapping error less than 5 mm. The head-
mounted eye-tracker provides gaze estimates (POGimage) 
with an accuracy of approximately one degree of visual 
angle. For a reading card placed 50 cm from the eye (a 
typical reading distance), the point-of-gaze is expected 
to have a maximum error of approximately 10 mm. The 
reading cards were designed such that all words are 
separated by at least 15 mm. For such a separation we 
expect that the viewed word will be correctly identified 
98% of the time. 
 
Detection of Unknown Words 
 
 The ability to identify the viewed word allows the 
reading assistance system to monitor the per-word 
processing time in real-time. However, to automatically 
trigger assistance for unknown words, the processing 
time must exceed a specific detection threshold. In this 
section, we describe a method to set this threshold. 
 To develop the detector, four skilled English readers 
read passages of text containing a mixture of known and 
unknown words while point-of-gaze was monitored. To 
minimize errors associated with head and reading-card 
motion, head position was stabilized using a chinrest, 
and simulated reading cards were presented on a 
computer screen. 

Each subject read twenty passages aloud and twenty 
passages silently (approximately 1200 total words). 
After each passage, the subject was asked to indicate the 
unknown words in the passage. The processing time for 
each word was measured. Processing time was found to 
be slower for aloud reading for all subjects; therefore in 
the design of the detector, the processing times for silent 
and aloud reading were analyzed separately. 

Since processing time is affected by word length 
[11], measured processing times were binned by word 
length. Words in each bin were further divided into two 
groups: known words and unknown words. This was 
done for measurements obtained during both silent and 
aloud reading. The mean processing time for each group 
was calculated. As expected, the results showed that 
processing time was longer for unknown words than 
known words for each word length. Figure 5 shows the 
mean processing times for Subject P.L. (aloud reading).  
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Figure 5: Processing times for Subject P.L. during aloud 
reading (one standard deviation is shown). This subject 
recognized all words shorter than six letters in length. 

 
Using processing time as the detection criterion, we 

set a threshold to define the maximum processing time 
expected for a known word. Detection of an unknown 
word occurs when processing time exceeds this 
threshold. The Neyman-Pearson Criterion is used to set 
a threshold that maximizes the probability of detection 
while constraining the probability of a false alarm. The 
processing time for known words is modeled by a 
Gaussian random variable r ~ N(µk, σk

2), where µk and 
σk are estimated for each word length for individual 
subjects under either aloud or silent reading. The 
probability of false alarm, PF, is given by 

 
FP  = P{r T}≥         (4) 

 
where T is the processing time threshold above which a 
word is detected as an unknown word. We impose the 
constraint F P = α , where α  is the acceptable probability 
of a false alarm. Hence, we can express T as  
 

-1
k kT = σ 2erf (1-2α) + µ .       (5) 

 
For each value of PF, there is a set of threshold 

values (T), where each threshold value is determined for 
a particular word length. The process to determine the 
threshold values for each word length is time 
consuming. If the reading assistance system is used by 
many subjects, it is impractical to determine the exact 
threshold values for each subject. Therefore, we decided 
to approximate the threshold values by a simple 
function of word length, which would allow threshold 
values to be specified by a small number of parameters. 
Figure 6 shows the set of threshold values calculated for 
Subject P.L. (aloud reading). The shape of the threshold 
curve suggested that a linear approximation may be 
appropriate. 
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Figure 6: Detection threshold for Subject P.L. during 
aloud reading 

 
The validity of this approximation was evaluated by 

applying the threshold values and their linear 
approximations to a set of processing times from which 
µk and σk

 were estimated (the training set). Detection 
performance, in terms of measured false alarm rate and 
measured detection rate, was not significantly affected 
by the use of the linear approximation. For values of PF 
between 0.01 and 0.20, the change in false alarm rate 
and detection rate did not exceed 0.05.  
 
Evaluation of Detector  
 
 In this section, we report the performance of the 
detector (using the linear approximation) on both the 
training set and a new test set. Figure 7 shows the 
measured false alarm rate for the training set as a 
function of the theoretical false alarm rate (PF).  
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Figure 7: Measured false alarm rate for the training set 
(aloud reading) 

 
The results showed that the measured false alarm 

rates closely followed PF. This suggests that 
approximations introduced by: (a) modeling r as a 
Gaussian random variable and (b) the use of a linear 
approximation for the threshold function, did not 
significantly affect the ability to predict the false alarm 
rate. 

The detector performance can also be evaluated in 
terms of the measured detection rate for the training set 
as a function of PF, shown in Figure 8. 
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Figure 8: Measured detection rate for the training set 
(aloud reading) 

 
 As expected, the detection rate increases as PF 
increases. Based on the above results, the value of PF 
can be set to satisfy application-specific requirements 
for detection rate and false alarm rate. We consider a PF 
value of 0.10 to be suitable since 9 out of 10 unknown 
words will be detected and vocalized. In the 
experiments to follow, we used this PF value to evaluate 
system performance. 
 Detection performance was evaluated on a test set 
using the detection thresholds obtained from the training 
set. To obtain the test set, the same four subjects read an 
additional twenty passages silently and twenty passages 
aloud. Detection rates and false alarm rates for silent 
and aloud reading are summarized in Tables 1 and 2, 
respectively.  
 
Table 1: Detection Performance for Silent Reading 
 

Detection Rate False Alarm Rate 
Subject Training Set Test Set Training Set Test Set 

E.G. 0.90 0.78 0.11 0.10 
M.E. 0.96 1.00 0.14 0.16 
P.L. 0.96 0.93 0.10 0.08 
V.S. 0.64 0.74 0.10 0.12 

Mean 0.87 0.86 0.11 0.12 
 
Table 2: Detection Performance for Aloud Reading 
 

Detection Rate False Alarm Rate 
Subject Training Set Test Set Training Set Test Set 

E.G. 0.89 0.86 0.11 0.09 
M.E. 0.96 1.00 0.11 0.12 
P.L. 0.96 0.94 0.10 0.10 
V.S. 0.90 0.86 0.12 0.11 

Mean 0.93 0.92 0.11 0.10 
 

The detection rates and the false alarm rates for the 
test sets and the training sets are similar. In general, the 
false alarm rate closely adhered to the specified PF value 
of 0.10. The results suggest that the detection thresholds 
obtained from a small training set can be successfully 
applied when reading new text. 

 

System Performance 
 
 An experiment using the head-mounted eye-tracker 
with the proposed mapping technique to determine the 
viewed word and the detection thresholds obtained 
above was performed to validate the principle of 
operation. 
 Two subjects read aloud from reading cards while 
sitting in a comfortable reading position (Figure 9). 
Head position was not restrained, allowing for natural 
head motions during reading. The subjects read aloud 
from reading cards, held at a comfortable reading 
distance (approximately 50 cm). The cards moved as the 
subject moved. PF was set to 0.10. Detection of an 
unknown word triggered computer vocalization of the 
word.  
 

 
 

Figure 9: Subject wearing the eye-tracker in a typical 
reading pose 
 
 Detection performance for the two subjects is 
summarized in Table 3. The results are very similar to 
that obtained for aloud reading when head movement 
and reading card movement were constrained (Table 2). 
The results show that the detector can be used within a 
natural reading setting. 
 
Table 3: Detection Performance within a Natural 
Reading Setting 
 

Subject Detection Rate False Alarm Rate 
M.E. 0.94 0.10 
P.L. 0.95 0.09 

 
Conclusions 
 
 We described a system that provides immediate 
vocalization of words that are unknown to the reader. 
We described a detector for which the false alarm rate 
can be controlled. The system provided vocalization 
assistance for 9 out of 10 unknown words (detection 
rate) and 1 out of 10 known words (false alarm rate). 
Vocalization of known words interrupts reading, 
therefore it is necessary to minimize the false alarm rate. 
This detection performance may be acceptable when 
using the reading assistance system to instruct unskilled 
English readers. In such a scenario the number of 
unknown words will be high compared to the number of 
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 known words, and the frequency of undesired 
vocalizations will be low. 
 To use the reading assistance system within a natural 
reading setting we have used a head-mounted eye-
tracker. However, the system is not suitable for long 
reading tasks due to subject fatigue. It is possible to 
address this drawback using techniques that combine 
remote gaze estimation and reading-card motion 
estimation. 
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