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Abstract: Hemodynamic variables are regulated by 
the infusion of several drugs in a clinical setting. To 
control the hemodynamics, multiple automated 
drug-delivery systems have been developed, and the 
robust controllers that can tolerate various responses 
to therapeutic agents have been desired. The purpose 
in the present study is to evaluate the control 
performance of a multiple adaptive predictive 
control based on neural networks (MAPCNN) under 
the wide changes of patient’s sensitivities to 
therapeutic agents, drug interactions and external 
disturbances. The NN components in the MAPCNN 
learned cardiac output and mean arterial pressure 
as the nonlinear model response made from 
hemodynamics of canine heart failure. The MAPCNN 
showed a robust control performance under the 
unknown conditions of sensitivities to drugs, drug 
interactions, and external disturbances. 
 
Introduction 
 

To regulate cardiac output (CO) and mean arterial 
pressure (MAP) simultaneously, the combined infusion 
of an inotoropic agent and a vasodilator has shown to 
benefit a patient with heart failure in a clinical setting 
[4]. The inotropic agent increases the force and velocity 
of contraction and results in directly augmenting CO. 
On the other hand, the vasodilator reduces the 

ventricular outflow resistance and results in the decrease 
of MAP [1]. Adaptive controllers have shown the 
feasibility of implementing a multivariable drug 
delivery system for the simultaneous control of CO and 
MAP using the combination of an inotropic agent and a 
vasodilator [6]. To perform a robust control, multiple 
model or adaptive predictive controllers have been 
developed, and they have adequately adjusted the 
hemodynamic parameters in the presence of the drug 
interaction [3], [7]. 

Because neural networks (NN) can express 
nonlinearities and interactions to system responses in 
the presence of the unstable response variability with 
exogenous perturbation, it is expected that the NN is 
simply designed and increase the robustness for the drug 
delivery system compared with the model- or rule-based 
controllers. An adaptive predictive control based on NN 
(APCNN) was applied to the MAP control during acute 
hypotension, and resulted in the robust control against 
the large disturbance [2]. The application of the APCNN 
to multivariable controls (MAPCNN) might be effective 
in regulating CO and MAP using dobutamine (DBT) as 
an inotropic agent and sodium nitroprusside (SNP) as a 
vasodilator in heart failures. The purpose of this study, 
therefore, is to evaluate the performance of the 
MAPCNN to regulate CO and MAP using DBT and SNP 
with heart failures under the non-linear and non-
stationary patient responses containing the wide changes 
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Figure 1. MAPCNN for the regulation of hemodynamics 
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Figure 2. A multilayer feed-forward NN with two hidden layers

of the drug sensitivities, interactions, and acute 
disturbances. 
 
Materials and Methods 
 

Modeling. To make the response model to 
therapeutic agents, the animal study was performed. The 
animal study conformed to the Guide for the Care and 
Use of Laboratory Animals published by the US 
National Institutes of Health (NIH Publication No. 85-
23, revised 1996). The acute ischemic heart failure in 
anesthetized dogs (n = 5) was induced by microsphere 
embolization of the left main coronary artery. The dogs 
were ventilated artificially with oxygen-enriched room 
air. A double-lumen catheter was introduced into the 
right femoral vein for administration of pharmaceutical 
agents using a computer-controllable infusion pump 
(CFV-3200; Nihon Kohden, Tokyo, Japan). CO and 
MAP were recorded at 10-Hz sampling rate. 

Models for the responses to therapeutic agents were 
made from the experimental data in canine left heart 
failure. The step responses of CO and MAP changed 
(∆CO and ∆MAP) from baseline value immediately 
after the acute heart failure (baseline: 74.2, 78.9, and 
62.6 ml·kg-1·min-1 in CO; 94.4, 92.1, and 86.5 mmHg in 
MAP) were recorded for 10-min DBT infusion at 3, 6, 
and 9 µg·kg-1·min-1. The step responses of ∆CO and 
∆MAP (baseline: 74.1, 59.3, and 55.9 ml·kg-1·min-1 in 
CO; 104.3, 103.6, and 99.4 mmHg in MAP) were 
measured for 10-min SNP infusion at 1, 2, and 4 µg·kg-

1·min-1. The step responses recorded at 10-Hz sampling 
rate were averaged every 30 s. The step response of 
∆CO or ∆MAP during the infusion of DBT at 6 µg·kg-

1·min-1 or SNP at 2 µg·kg-1·min-1 was approximated to 
the linear first-order delay system with lag time in the 
continuous-time domain: 
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where ∆Y’(t) is the step response of ∆CO(t) or ∆MAP(t), 
K is a proportional gain, L is a lag time, and T is a time 
constant. The fitted parameters to the averaged step 
responses in DBT and SNP were acquired by least 
squares method. 

The linear ∆CO or ∆MAP response as a model was 
calculated by the convolution integral in the discrete-
time domain: 
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u(t) is the infusion rate of DBT or SNP. g(t) is the unit 
impulse response of ∆CO or ∆MAP, and it is calculated 
from the derivative values of the step response in (1). 
∆T is sampling interval (s) and Nm is the finite number 
of terms in the model for the unit impulse response. ∆T 
and Nm were set to 30 s and 20 for simulation study. 
Table 1 shows the parameters of K, T, and L used for 
simulation study. 
 

Table 1. Model parameters in linear- and nonlinear-
fitting functions 
 

 Linear Nonlinear 
 K T L P1 P2

DBT  CO  15.8 164.3 30 105.3 0.028 
DBT MAP 4.4 65.2 30 22.8 0.145 

SNP  CO 3.0 40.6 60 37.7 0.051 

SNP MAP -12.5 209.4 60 -26.2 -0.085
The proportional gain, K, the time constant, T, the lag 
time, L, the response range, p1, and the coefficient of 
gain, p2. 
 

To express the nonlinearity of ∆CO or ∆MAP 
response, ∆Y*(t) as the linear response was modified 
through the following sigmoidal function: 
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where p1 is the response range which shows the 
difference between the maximum and minimum values 
of ∆Y, and p2 is a coefficient of gain. The parameters (p1 
and p2) were determined by least squares method (see 
Table 1). 

The model responses containing the patient 
sensitivity to therapeutic agents and the drug interaction 
are expressed as 
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where ∆Y11(t) or ∆Y12(t) is ∆CO response in DBT or 
SNP infusion. ∆Y21(t) or ∆Y22(t) is ∆MAP response in 
SNP or DBT infusion. The a1, a2, b1, or b2 is the 
proportional gain of the patient sensitivity to the drug. 

Control Design. Figure 1 shows a block diagram of 
a MAPCNN system for the regulation of the 
hemodynamics. The MAPCNN is a control system where 
the NN recursively learns the characteristics of a patient 
using their observed response to drug infusions, and 
then determines the predicted output after Np steps. 
First, in the closed loop controls, the NN learned about 
∆COm or ∆MAPm response once every 30 s. Second, the 
learned ∆CONN or ∆MAPNN was used for the prediction 
of future ∆CONN or ∆MAPNN responses. Two 
components of the NN were prepared for the drug 
delivery controls of the DBT-CO loop and the SNP-
MAP loop. 

A multilayer feed-forward NN with two hidden 
layers (Fig. 2) was used to emulate ∆COm or ∆MAPm 
response. In a single NN component, the number of 
units in first hidden layer of a NN was set to 14 being 
the same number as the input units. Nonlinear changes 
in ∆COm or ∆MAPm are predicted through NN. The 
input layer contained the past DBT and SNP infusion 
rate for 3 min. 

The input values are sent through the first hidden 
layer, second hidden layer, and output layer [5]. The 
number of units in second hidden layer on a NN was set 
to 14 being the same number as the first hidden layer 
units. ∆YNN in the output layer shows ∆CO or ∆MAP 
response mimicked by NN (∆CONN or ∆MAPNN). NN 
was trained by the output of ∆COm or ∆MAPm to the 
random inputs. The error signal is propagated back 
through the network modifying the weights before the 
presentation of the next input. All connection weights 
are adjusted to decrease the error function by the 
backpropagation learning rule based on the gradient 
decent method. NN recursively learns the characteristics 
of the controlled system from ∆COm or ∆MAPm 
response to DBT and SNP infusions. ∆CONN and 
∆MAPNN indicate the physiological parameters 
predicted by the NN. The initial connection weights of 

NN were determined from the learning results using the 
∆COm and ∆MAPm. 

The prediction loop in the MAPCNN had to 
determine the optimal DBT or SNP infusion rate that 
minimized the cost function [J(t)]. 
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where W is the weight of input change, Np represents a 
prediction range, and r(t+i) is the setpoint of ∆COm (J1, 
W1, Np1, and r1) or ∆MAPm (J2, W2, Np2, and r2) control. 
J(t) contained the predicted output after Np steps to 
suppress the sudden changes in DBT or SNP infusion 
rate [5]. The infusion rate of DBT was determined under 
the DBT-CO loop, and then that in the SNP was 
determined under the SNP-MAP loop. 
 
Results 
 

Determination of Control Parameters. To decide the 
initial weights in the NN for the MAPCNN, the NN 
learned ∆COm or ∆MAPm response. The learning of NN 
was repeated 100,000 times. The starting weights in the 
NN before the learning of ∆COm or ∆MAPm response 
were given at random between -1 and 1. The infusion 
rate of DBT or SNP, then, was given at random between 
-4 and 6 µg·kg-1·min-1. The ∆COm was divided by 200, 
and ∆MAPm was divided by 100 for the normalization. 
Learning results of the NN respectively showed errors 
of 2.5 ml·kg-1·min-1 in the DBT-CO loop and 1.5 mmHg 
in the SNP-MAP loop compared with the ∆Ym data. The 
trained NN was used for the following simulation study, 
and the learning rates of the NN were set to Kn1 = 0.2 in 
the DBT-CO loop and Kn2 = 0.2 in the SNP-MAP loop. 

Evaluation of Controller. The control objective was 
to increase the low CO at the setpoint (+35 ml·kg-1·min-

1) and to maintain the normal MAP at the setpoint (±0 
mmHg). The control duration was 120 min. The pure 
time delays of patient responses were changed during 
30–120 s. The parameters in Eq. (4), a1, a2, b1, and b2, 
were changed randomly from 1/3 to 3. The infusion 
rates were bounded as follows: 0 ≤ DBT ≤ 10 µg·kg-

1·min-1 and 0 ≤ SNP ≤ 6 µg·kg-1·min-1. 
Figure 3 shows of the MAPCNN (Np1 = Np2 = 12, W1 = 

W2 = 0.01, Kn1 = Kn2 = 0.2, r1 = +35 ml·kg-1·min-1, and 
r2 = ±0 mmHg) under the unknown time-variant 
responses with acute disturbances. A(a) in the graph 
shows changes of the parameters of the time delays (L) 
in the unit impulse response of Eq. (2). A(b) indicates 
changes of the parameters (a1, a2, b1, b2) in Eq. (4). B(a) 
and C(a) show changes of acute disturbances and 
random noise added to ∆COm and ∆MAPm responses. 
B(b) and C(b) show setpoints, ∆COm and ∆MAPm (solid 
lines), and predicted outputs by NN (dashed lines). B(c) 
and C(c) are the weight changes in NN for controllers in 
DBT-CO and SNP-MAP loops: weights between input 
and first hidden layers (top), first and second hidden 
layers (middle), and second hidden and output layers 



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 

50

1
2
3
4
5
6
7

0

Time (min)

In
fu

si
on

 ra
te

 (µ
g·

kg
-1

·m
in

-1
)

20 40 60 80 100 1200

∆
M

A
P 

(m
m

H
g)

setpoint

DBT

SNP

0

40

-10

without SNP

NN

NN

setpoint

0

0

+20

noise

∆
C

O
 (m

l·k
g-1

·m
in

-1
)

disturbance

disturbance

∆
w

ei
gh

ts
 in

 N
N

 ( ×
10

-3
)

-10

0

10

30

20

2.5

0

0

0

3.5

35

bias3.5

0

0

0

7 bias

80
bias

∆
w

ei
gh

ts
 in

 N
N

 ( ×
10

-3
)

D
is

tu
rb

an
ce

D
is

tu
rb

an
cc

e

input to first hidden layers

first to second hidden layers

second hidden to output layers

input to first hidden layers

first to second hidden layers

second hidden to output layers

3

0

a1

P
ar

am
et

er
s

2

1

20

-10

a2

b1

b2

120

0

60

D
el

ay
s 

(s
)

delays to DBT

delays to SNP

bias

bias

bias

B
(a)

(b)

(c)

A

(a)

(b)

C

(a)

(b)

(c)

D

actual

actual

Figure 3. Simulation results of MAPCNN under unknown time-variant responses with disturbances 

(bottom). D is the infusion rates of DBT (solid line) and 
SNP (dashed line). 

The ∆CO converged on the setpoint within 10 min. 
The SNP suppressed the hypertension (+6.1 vs. +22.8 
mmHg with or without SNP) induced by DBT. At 40 
min, acute disturbances were added to the responses. 
The ∆CO and ∆MAP quickly converged on the setpoint 
within 10 min, whereas the transient hypertension was 
induced (+9.4 vs. +38.9 mmHg with or without SNP). 
The average errors between setpoints and observed 

responses were 4.2 ml·kg-1·min-1 in CO and 2.7 mmHg 
(15.3 mmHg without SNP) in MAP during the control. 
 
Discussion 
 

Application of MAPCNN to a multiple hemodynamic 
control accomplished the robust regulation of CO and 
MAP under various changes of the patient’s responses 
to drugs and disturbances. The MAPCNN suppressed 
those disturbances quickly and performed stabilized 
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 control under unexpected acute disturbances. Under 
time-variant patient responses with time delays, which 
are a crucial obstacle to stable control, the MAPCNN 
provided sufficient control performance. 

The two-NN models of average responses with heart 
failure were considered in the calculation of the 
appropriate multiple drug infusion rates of DBT and 
SNP to mitigate the enormous number of trials 
associated with the control design. The controllers 
described herein are an effective means of adjusting to 
various patients’ idiosyncratic sensitivities to drugs and 
describing nonlinear responses to drugs. A controller 
based on NN solves those problems because it markedly 
decreases the number of models required for the control 
design of the various changes of hemodynamics 
compared with model predictive controllers or fuzzy 
controllers. 

Irrespective of the wide range of actual physiological 
responses, CO and MAP in the MAPCNN approached 
the setpoints promptly because of the guided setpoint of 
CO during the initial 10-min control considering the 
optimization of both the stability and speed for the 
MAPCNN. The designed MAPCNN, therefore, will be 
feasible for application to automatic drug therapy in 
heart failures. However, when rapid treatment using 
drugs against more acute and large disturbances is 
required during hemodynamic controls, another 
supplemental system might be required. Diagnoses of 
characteristics of patients’ responses to drugs or tuning 
weights of NN during closed-loop controls may also be 
effective for hemodynamic controls to accelerate the 
NN learning speed. 

The primary control target was the increase of low 
CO in acute heart failure. Therefore, the control for CO 
induced hypertension. The MAPCNN suppressed 
hypertension using optimal infusion of SNP as well as 
increasing CO using DBT to an optimal target value. 
The SNP suppresses the increase in preload through the 
decrease of SVR because of increasing venous 
compliance for retaining the blood in the veins and 
lowering the venous return to the heart. 

Because the fluid infusion, blood transfusion, 
anesthesia, and muscular blockade as well as the 
therapeutic agents controlled in this study are common 
in clinical practice, robust controllers that can adjust 
physiological responses to further multiple drugs should 
be designed. The MAPCNN tested herein can be 
extended simply to multivariate control systems under 
such clinical conditions for drug therapy with heart 
failure. The acute left heart failure of dogs induced in 
this study resulted in the low CO and normal MAP. The 
MAPCNN showed the identical control performance in 
changes over the pathology of hemodynamics in heart 

failure of simulation study. The MAPCNN, also, was 
adequately able to tolerate hemodinamic responses in 
actual heart failures of dogs, linking to apply the 
controller to clinical situations. 
 
Conclusions 
 

MAPCNN was designed and evaluated in simulation 
studies to regulate the CO and MAP in acute heart 
failure using the DBT and SNP under the nonlinear and 
wide changes of the patient sensitivity to drugs and the 
drug interaction. MAPCNN showed a robust control 
performance under the wide ranges of drug responses. 
To apply the MAPCNN to clinical situations, the further 
studies will be required. 
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