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Abstract: The paper deals with looking for 
significant phenomena contributing to increase of a 
risk of sudden cardiovascular death in well-trained 
horses during anaesthesia and/or contributes to 
reveal of fundamental control mechanisms that 
handle with some protection reactions of 
cardiovascular system during surgery. 
 
Introduction 
 

Mortality of horses under a total anaesthesia is still 
relatively high in spite of all the progress in a field of 
veterinary anesthesiology. According to the most 
extensive and the most complex study done in 6255 
horses [Johnston GM et al., 1995] under anaesthesia the 
sudden death rate is around 0.9%. 39% of the deaths 
were caused by a failure of cardiovascular system. 

Former research showed that monitoring of ordinary 
vital parameters as electrocardiography, pulse 
oxymetry, direct monitoring of blood pressure, gas 
concentration in respiratory system, state of the 
acidobasic equilibrium is not always able to reveal 
oncoming collapse of the cardiovascular system. 
However, our clinical experiences show that there is 
some relation between fitness condition of the horses 
and predisposition to the sudden cardiovascular death 
(surprisingly the greater risk for well trained horses). If 
we want to verify or exclude such a hypothesis, we have 
to analyze signals which primary characterize dynamics 
of cardiovascular system of horses under anaesthesia. 

A lack of our previous research is the fact that the 
cardiovascular control models result from analysis of 
data measured under standard living conditions. It 
means that these models cannot be used for data 
measured during anaesthesia because it is not possible 
to influence activity and reactions of the cardiovascular 
system independently on the surgery. That is why, it is 
necessary to use different techniques that enable 
continual evaluation of the measured signals and their 
mutual relationships. Since the measured data do not 
carry only the useful but also some additional 
information it is usually necessary to remove the useless 
components and reveal more informative or new 
components.  

 

Materials and Methods 
 
ECG, CO2 saturation, blood pressure signals that 

describe an activity of a cardiorespiratory system were 
recorded from horses by means of Datex-Ohmeda 
S/5TM monitor during anaesthesia and surgery. 

The signals describe cardiovascular system activity 
and its control, electro-mechanical activity of heart and 
the activity of respiratory system. We assume that the 
signals can carry an information explaining causes of 
sudden cardiovascular death. 

We assume that besides important information the 
recorded data contain some redundant useless 
information. The principal component analysis method 
(PCA) is one of the ways which can reveal these 
unimportant signal components and simplify the mutual 
relationships in the analyzed processes.  

The basic principle of solution is introduced in 
Figure 1. 

 
 

 
Figure 1: Block diagram of a project solution.  

The principle of the PCA [1] [2] is in a 
transformation of an original p-dimensional space (in 
our case the p represents a number of the monitored 
signal parameters) into a new p-dimensional orthogonal 
space. It represents calculation of eigenvalues and 
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 eigenvectors of a covariation matrix S of input data. The 
input data are arranged in matrix X(n,p) where n 
represents number of observations of the p variables. 

The k-th principal component Yk of observation in 
matrix X is a linear combination 
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The coefficients vik of the linear combination 

described by eq. (1) are elements of the eigenvector vk 
of the matrix S and the eigenvector corresponds to the 
k-th highest eigenvalue of the matrix S. 
 
Results 
 

Length of monitored signals recorded from horses 
corresponds to duration of surgery that takes hours. The 
signals usually contain non-removable artifacts and that 
is why signals from about 15 minute intervals were used 
for the analysis. The signals are sampled in order to use 
a maximum capacity of the monitoring system and with 
respect to their frequency spectrum: 300Hz for ECG 
signal; 100Hz for blood pressure signal; 25Hz for all 
other signals. 

The seven parameters determined from the measured 
signals used for the PCA analysis are: 

 
• interval between the R wave and the moment 

of the systolic blood pressure – x1. 
• diastolic blood pressure (the lowest value of 

blood pressure before systole) – x2;  
• heart rate determined  from ECG signal (based 

on interval between two successive R waves)  - 
x3; 

• heart rate determined from blood pressure 
signal (based on interval between two 
successive systoles) – x4; 

• mean blood pressure (mean value between two 
systoles) – x5;  

• minimal blood pressure (the lowest value of 
blood pressure. between two systoles) – x6; 

• systolic blood pressure (the highest value of 
blood pressure. in one heart period) – x7;  

The next figures and tables demonstrate some 
characteristic results. 

 

 
Figure 2: Patient A – input signals normalized to 
standard deviation. 

 

Table 1: Patient A – computed principal component 
vectors. 

 V1 v2 v3 v4 v5 v6 v7 
x1 0.39 0.07 -0.35 0.81 0.23 -0.00 0.11 

x2 -0.39 -0.25 -0.33 -0.09 0.70 0.20 -0.38 

x3 -0.36 0.59 -0.14 0.13 -0.23 0.66 -0.01 

x4 -0.36 0.61 0.07 0.08 0.26 -0.65 0.01 

x5 -0.39 -0.25 -0.10 0.02 0.11 0.03 0.87 

x6 -0.38 -0.27 -0.52 0.18 -0.57 -0.31 -0.23 

x7 -0.37 -0.28 0.68 0.53 -0.03 0.07 -0.18 

 

 
Figure 3: Patient A – principal components curves. 
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Figure 4: Patient A – percent variability explained by 
each principal component. 

  

 
Figure 5: Patient B – input signals normalized to 
standard deviation. 

 
Table 2: Patient B – computed principal component 
vectors. 

 v1 v2 v3 v4 v5 v6 v7 
X1 0.17 0.64 0.60 0.46 -0.01 0.02 0.03 

X2 -0.44 -0.05 0.39 -0.27 0.28 -0.60 0.37 

X3 -0.35 0.49 -0.38 -0.00 0.08 -0.36 -0.60 

X4 -0.35 0.46 -0.40 -0.05 0.02 0.37 0.61 

X5 -0.45 -0.10 0.18 0.06 -0.87 -0.00 -0.04 

X6 -0.44 -0.06 0.38 -0.25 0.32 0.61 -0.36 

X7 -0.37 -0.36 -0.13 0.81 0.26 -0.00 0.04 

 

 
Figure 6: Patient B – principal components curves. 

 
Figure 7: Patient B – percent variability explained by 
each principal component. 

 
Figure 8: Patient C – input signals normalized to 
standard deviation. 
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 Table 3:  Patient C – computed principal component 
vectors. 

 v1 v2 v3 v4 v5 v6 v7 
x1 -0.36 0.37 0.48 0.70 0.14 -0.07 0.00 

x2 0.46 0.05 0.50 -0.15 0.11 -0.01 -0.71 

x3 0.06 0.65 -0.18 -0.13 0.08 0.72 0.00 

x4 0.07 0.65 -0.21 -0.23 -0.03 -0.69 0.00 

x5 0.48 0.07 -0.14 0.46 -0.73 0.03 0.00 

x6 0.46 0.05 0.50 -0.15 0.11 -0.01 -0.71 

x7 0.46 -0.08 -0.43 0.43 0.64 -0.07 0.00 

 

 
Figure 9: Patient C  – principal components curves. 

 
Figure 10: Patient C – percent variability explained by 
each principal component. 

Discussion 
 

The obtained PCA results for all the patients can be 
divided into three categories according to the 
eigenvector properties and variances of the particular 
principal components. 

Fig. 2., Fig. 5. and Fig. 8 show PCA input data from 
the mentioned three particular categories that were 
determined from the measured signals. 

The obtained and described PCA results mean that 
we can be interested in the first three principal 
components only, because thay contain over 95% of the 
total variability of the original signal parameters.  

The first category is characterized by a great 
variability of the first principal component (over 88%) 
and relatively balanced composition of the particular 
parameters as it is apparent from the similar values in 
the first column in the Tab. 1. and from Fig. 4. It also 
means relatively strong linear dependency between the 
input parameters of PCA. We can consider that there is 
only one control mechanism behind all the parameters. 

The second category has considerable part of total 
variability also in other components (Fig. 7.) but there is 
relatively balanced composition of the parameters again 
(Tab. 2.). It is difficult to say which of the parameters is 
the more informative.  

The third category is the most interesting from all of 
our results because the information is distributed into 
more components (Fig. 10.) and the values of the 
eigenvectors components usually differ in order 
(Tab. 3.).  

In the 2nd and 3rd category we can consider two or 
more mechanisms that control the behavior of particular 
parameters. 
 
Conclusion 
 

The advantage of PCA is relatively low time 
consumption for a calculation and that is why PCA 
seems to be suitable to reach further goals connected 
with the implementation of the complete analysis into 
the system for the real-time prediction of emergency 
situations during surgery of horses. 

Our results will be compared to detailed clinical 
information about the examined horses and to results 
from another algorithm like independent component 
analysis (ICA) to confirm mentioned three categories. 
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