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Abstract: The adaptive methods are very often ap-
plied in the digital signal processing domain. The op-
timal solution of applying the adaptive filtering is the
Wiener filter. The application of traditional adaptive
methods in the presence of an impulsive type of noise
can lead to incorrect operation of such systems. By
replacing the traditional square function as the cost
function with another function, one can to increase
the level of robust for an outlier data. The main aim
of this paper is to present the simple, adaptive robust
filter with the Huber function as the cost function. Ef-
fectiveness of such filter is investigated during the fil-
tration of the high resolution ECG signals in the pres-
ence of an impulsive noise.

Introduction

The biomedical signals are commonly recorded with
noise. Many different kinds of noise exist in biomedical
environment. Because there exists many different type of
biomedical signals, the electrocardiogram (ECG) signal
was chosen. This signal is well known for a long time and
it is well described in a literature. The most often noises
which arise in ECG signal processing are: baseline wan-
der, motion artifacts, 50 Hz power line interferences and,
the most difficult to suppress, is a waveform of an elec-
trical activity of muscles (the electromyographic signal).
This ”natural” distortion is usually modeled with a white
Gaussian noise. Such approach is justified with Central
Limit Theory. But this assumption can lead to too op-
timistic conclusions. The muscle noise shows frequently
an impulsive nature and it means that the Gaussian model
may fail.

Linear filtering techniques are often used in applica-
tions of a digital signal processing. The reduction of a
noise is a first step of each biomedical signal processing
system. The precision of all afterward operations which
are made on the signals, depends on the quality of noise-
reduction methods [12].

The traditional methods of filtering are very sensi-
tive to the presence of outliers caused by spike artifacts,
bursts of noise or other [10, 12, 18]. The performances
of systems developed under the assumption of Gaus-
sian noise can be severely degraded by the non-Gaussian
noise due to potent deviation from normality in the tails.
Consequently, it is not possible to design optimal filters,

and even systems based on generalized likelihood ratio
(GLR) principles can perform very poorly [9]. The per-
formance of conventional linear adaptive filters in the
presence of an impulsive noise deteriorate significantly.
The theory of a Wiener filter describes the behavior of
the least-squares (LS) and the least-mean-squares (LMS)
adaptive filters. If processing signals are stationary, then
the coefficients of ”optimal” Wiener filter are constant.
But the real signals are often non-stationary and that is a
reason, which makes in practice difficult to apply Wiener
filter equations or it is impossible.

The most common method of removing the outliers
in signal is the manual spike detection. Although practi-
cally successful, this method requires human supervision
and its manual nature makes it especially time consuming
when using multiple channels [14].

Then only the robust methods can suppress such an
impulsive noise. An example of robust methods are an
application of nonlinear filtration methods. The most
often applied nonlinear filter is the median filter. The
median filter is very attractive for this purpose, but also
can remove from signal fine details [5]. Second well-
known non-linear filter is the myriad filter. This approach
based on M-filters has one disadvantage which depends
on computational complexity for real-time signal pro-
cessing applications [5].

The main aim of this work is to present adaptive fil-
ter, which is based on recursive method and the compu-
tational effort is small, so the filter can be applied in real-
time signal processing applications. In order to protect
output of the filter against outliers, the M-function (Huber
function) is applied. The reference filters are the median
filter, Savitzky-Golay filter and RLS filter.

The paper is organized as follows. In next section,
the principle of M-estimators are briefly reviewed. The
proposed simple, adaptive M-filter is then derived in
next section and after it the symmetric α-stable distri-
bution used to model the impulsive noise is shortly pre-
sented. Finally, results of investigations and conclusions
are drawn in last section.

The basic theory of the M-estimators

One of the popular robust method is the method based
on M-estimators. The principle of M-estimators can be
formulated in the following way. Given a set of N data
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 samples x1,x2, . . . ,xN , where xi = β + vi and 1 ≤ i ≤ N.
The problem is to estimate the location parameter β un-
der noise component vi. The location parameter for the
Gaussian distribution is a sample mean. The other lo-
cation parameters are a median and a mode. These pa-
rameters identify the position of the probability density
function (pdf) on the real line of data samples. The dis-
tribution of vi in not assumed to be exactly known. The
only basic assumption is that v1, . . . ,vN obey a symmet-
ric, independent, identical distribution (symmetric i.i.d.)
[6, 13].

The M-estimate or maximum likelihood-type estima-
tor (MLE), was originally proposed to improve robust-
ness of statistical estimators subject to small deviations
mentioned above. The M-estimate of β̂ is defined as the
minimum of a global energy function:

β̂ = argmin
β

N

∑
i=1

ρ(xi−β ) (1)

The ρ(·) is called the penalty or the cost function. An M-
estimator of location is defined as the parameter β̂ that
minimizes the expression in (1). The behavior of the M-
estimator is completely characterized by the shape of ρ
function [2, 5, 13].

The ρ(z) is a function of a single variable z≡ (xi−β ).
Let the function ψ(z) is the derivative of ρ(z), e.g.:

ψ(z) =
dρ(z)

dz
(2)

The ψ(z) function, known as the influence function, is
some odd, continuous, and sign-preserving function [11,
16]. The ψ(z) measures the influence of a data set on
the value of the parameter estimate. In addition also the
weight function can be defined as:

φ(z) =
ψ(z)

z
(3)

In order to minimize equation (1) it is necessary to
solve the following equation:

0 =
N

∑
i=1

ψ(xi−β ) (4)

The last expression is the useful in presentation of differ-
ent kind of M-estimators.

Special cases of the ρ(z) and ψ(z) functions:
- the errors are normally distributed then ρ(z) = 1

2 z2

and ψ(z) = z. These last dependence leads to the sample
mean and the associated M-estimator is the least squares
estimator. The ψ(z) function is linear and it means,
that the influence of a data on the estimate increases lin-
early with the size of its error, which confirms the non-
robustness of the least-squares estimator [20].

- the errors are distributed as a double or two-sided
exponential ρ(z) = |z| and ψ(z) = sgn(z). This expres-
sion denotes the sample median.

- the errors are distributed as a Cauchy distribution
and then ρ(z) = log[K2 + z2] and ψ(z) = 2z

K2+z2 where

K > 0. This expression is the base of the sample myriad
with a linear parameter K, which tune properties of this
estimator. For properties of myriad filters see [5, 8].

These functions in cases mentioned above determine
the robust property of the M-estimators. This general
idea, that the weight given individual point should first in-
crease with deviation, then decrease, inspires some other
prescriptions for the ψ function which do not especially
correspond to standard, text book probability distribu-
tions [17].

The generalized form of M-estimator is the following.
If the cost function ρ(x,β ) is chosen as:

ρ(x,β ) =− log f (x,β ) (5)

then the M-estimate gives the ordinary maximum likeli-
hood estimate, where x is the observed random variable
with probability density function (pdf) f (x), and β is the
parameter to be estimated. In practical situations, the un-
derlying pdf of the noises are difficult to estimate, and
ρ(x,β ) is usually chosen as a fixed function of x only,
that is, ρ(x).

In this paper as the M-estimator, as the cost function ρ
the Huber function is applied. The Huber objective func-
tion is a hybrid of the L1 and L2 norms. The ρ function is
given by [7, 15, 20]:

ρ(z) =

{
z2

2 , |z| ≤ k;
k|z|− k2

2 , |z|> k.
(6)

where k is the cutoff value. The ρ function is not strictly
convex. The influence function ψ , is an odd function and
is given by:

ψ(z) =
{

z, |z| ≤ k;
k · sgn(z), |z|> k. (7)

The weight function φ for the Huber function has the fol-
lowing form:

φ(z) =
{

1, |z| ≤ k;
k · sgn(z)/z, |z|> k. (8)

Adaptive, robust M-filter

Let x(n) is a deterministic signal which is corrupted
with noise v(n), so that the observed signal is y(n) =
x(n) + v(n). The estimation of x(n) is denoted as x̂(n).
Let define estimation error as:

e(n) = y(n)− x̂(n) (9)

Traditionally, using the least squares estimator which
minimizes the weighted squared sum of estimation error
samples, the performance function JLS has the following
form:

JLS =
n

∑
i=0

λ n−i(e(i))2 (10)

where λ (0 < λ < 1) is the exponential weighting factor
or simply, positive forgetting factor.
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 In the case of presence of an impulsive noise, to pro-
vide robust filtering, the performance function J has to
used the proposed in above section robust M-function in-
stead of a square function. Then the performance func-
tion JM can be defined as:

JM =
n

∑
i=0

λ n−iρ(e(i)) (11)

where: ρ(·) is the cost M-function, λ is forgetting factor
(in this work λ = 0.8).

In order to minimize expression (11), the method
from [3] is presented and using (4) the following equa-
tion has to be solved:

n

∑
i=0

λ n−iψ(e(i)) = 0 (12)

From (3), the equation (12) can be written as:

n

∑
i=0

λ n−iφ(e(i))e(i) = 0 (13)

Let denote as v(i) = φ(e(i)), and using (9)then

n

∑
i=0

λ n−iv(i)(y(i)− x̂M(n)) = 0 (14)

where x̂M(n) is the M-estimate of x̂(n). Evolving (14) one
gets:

n

∑
i=0

λ n−iv(i)y(i) =
n

∑
i=0

λ n−iv(i)x̂M(n) (15)

and finnaly:

x̂M(n) = ∑n
i=0 λ n−iv(i)y(i)
∑n

i=0 λ n−iv(i)
(16)

The sequence v(i) assumes knowledge of the optimum
solution, e.g. x̂M(n) = x̂opt(n) at time n and makes error
sequence e(i). It is not true and this is the reason that in
the place of v(i) = φ(e(i)) the sequence of w(i) = φ(ξ (i))
is used where:

ξ (n) = y(n)− x̂(n−1) (17)

and denote the a priori estimation error.
Using (16) and (17) the estimation of x̂M(n) at time n is
defined as:

x̂M(n) = ∑n
i=0 λ n−iw(i)y(i)
∑n

i=0 λ n−iw(i)
(18)

Let define auxiliary variable SM(n) defined as:

SM(n) =
n

∑
i=0

λ n−iw(i) (19)

The SM(n) can be calculated using the following recur-
sive formula:

SM(n) = w(n)+λ ∑n−1
i=0 λ (n−1)−iw(i) =

= w(n)+λSM(n−1)
(20)

Using (20), then the numerator in the right hand side of
(18) can be modified and written as:

∑n
i=0 λ n−iw(i)y(i) = w(n)y(n)+λ ∑n−1

i=0 λ (n−1)−iw(i)y(i)
= w(n)y(n)+λSM(n−1)x̂M(n−1)

(21)
Finally, using (20) and (21) the estimation of x̂M(n) at
time n can be written as:

x̂M(n) =
w(n)y(n)+λSM(n−1)x̂M(n−1)

w(n)+λSM(n−1)
(22)

To conclude, the algorithm of adaptive, robust
M-estimation can be formulated as [3]:
Initialisation: SM(0) = 0 and x̂M(0) = 0
Basic recursion: ∀n = 1,2, . . .
1. using the weighted function φ of robust M-function
calculate w(n) as:

w(n) = φ(y(n)− x̂M(n−1)) (23)

2. estimation of x̂M(n) according to eq. (22),
3. estimation of SM(n) according to eq. (20),
4. goto step 1.

The proposed filter for purpose of this paper is applied
as the predictor of the first order.

In this work the Huber M-function is applied (see (6),
(7) and (8))with cutoff value k. The choice of cutoff value
k in significantly determines on the proposed algorithm.
In this case, the cutoff value k can be chosen as [2]:

k = 2.576 · σ̂(n) (24)

where σ̂2(n) is estimated variance of the ”impulse-free”
estimation error. To estimate σ̂2(n) the following formula
can be used [2]:

σ̂2(n) = λσ σ̂2(n−1)+(1−λσ )c1med(Ae(n)) (25)

where Ae(n) = {e2(n), . . . ,e2(n−Nw + 1)}, med(·) de-
notes the sample median operation, Nw is the length of the
estimation window (Nw = 21), λσ is the forgetting factor
(in this work λσ = 0.65) and c1 = 1.483(1+5/(Nw−1))
is a finite sample correction factor.

The α-stable distributions

In the real world of signals and noises there exist
many of them, which don’t reveal the gaussianity, for ex-
ample switching transients in power, accidental pulses in
telephone lines and many others. In biomedical engineer-
ing, such phenomena occur in diathermia, when using
surgical devices, or in electrocardiology (muscle noise),
when a system is switched from one mode to another.
Such signals can be characterized by their impulsiveness.
These impulsive features can be well characterized using
the α-stable distributions [18, 19]. In this work the sym-
metric α-stable distribution is applied.

A class of symmetric α-stable distributions (SαS) can
be characterized by their distribution having a character-
istic function

ϕ(t) = exp( jµt− γ|t|α) (26)
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 where α is the characteristic exponent restricted in the
range 0 < α ≤ 2, µ is the real-valued location parame-
ter, γ is the dispersion of the distribution (γ > 0), it deter-
mines the spread of the density around its location param-
eter [18]. The most important parameter of α-stable dis-
tributions is the characteristic exponent, because α con-
trols the heaviness of the distribution tails [18].

For the estimation of the α-stable distributions pa-
rameters several methods have been proposed, see [4,
18, 19]. In this paper, the method described in [4] is
used. Estimation in the log |SαS|-process characterizes
low computational complexity, and the estimators are a
closed form expression. Let Y = log |X |, where X de-
notes random variable of the SαS distribution. The first
and second moment of Y can be determined as:

E(Y ) = Ce

(
1
α
−1

)
+

1
α

log(γ) (27)

Var(Y ) = E{[Y −E(Y )]2}=
π2

6

(
1

α2 +
1
2

)
(28)

where: Ce=0.57721566... is Euler constant, E(·) is the
expected value operator.
From (28) the characteristic exponent α is calculated and
from (27) the dispersion γ is obtained.

Filtering procedure and simulation results

The M-filters presented in previous section were eval-
uated through a computer simulation procedure involving
the ECG cycles filtering corrupted by simulated artificial
α-stable noise and a muscle noise. The five ECG cycles
were randomly chosen from the existing database. The
ECG signal is sampled 2000 time per second and is of
length L = 1560.

An ECG cycles are corrupted by the simulated α-
stable noise with the known value of α and generalized
SNR (GSNR) defined as:

GSNR = log10
σ 2

s

aγ
(29)

where σ2
s is the variance of a clean signal signal, γ is

the dispersion of an impulsive noise calculated as is de-
scribed in [4], a is a scaling factor. When the character-
istic exponent of SαS equals α = 2, then standard SNR
definition can be obtained. In the same way the ECG cy-
cles are disturbed with the muscle noise.

In order to evaluate a performance of non-linear fil-
tering the normalized mean square error (NMSE) factor
is introduced and NSME is defined as:

NMSE = ∑L
i=1[xM(i)− s(i)]2

∑L
i=1[s(i)]2

100% (30)

where: xM(i) is output of the M-filter, s(i) is the deter-
ministic part of a signal, without a noise, L is the signal
length. The NMSE factor is the distortion measure of a
signal after filtering procedure.

The algorithm presented in [1] is used to calculate the
SNR improvement. The achievable improvement of the
SNR of a noisy time series depends on the noise reduc-
tion method and on the SNR of the noise contained in the
date. Let s(n) is a real valued, time-discrete signal and its
empirical mean is defined as:

〈S〉=
1
L

L

∑
i

s(i) (31)

The power of s(n) is defined as Ps = 〈S2〉 − 〈S〉2. Let
the x(n) is the signal corrupted by noise, then the SNR in
x(n) is defined as:

SNRx = 10log10(
Ps

Ps−x
) (32)

If by a noise reduction algorithm from x(n) is generated
another signal xM(n) supposed to be a better estimate of
s(n), the SNR improvement is defined as:

SNRimpr = SNRxM −SNRx (33)

The results are grouped into two categories. The first
group of results are obtained for one value of GSNR, i.e.
10 dB for artificial, simulated impulsive noise. For each
value of α (in the range from 1.5 to 2 with step 0.1), 200
different realizations of an impulsive noise were gener-
ated with known value of GSNR and added to clean cycle
of ECG. The second group of results are obtained for the
muscle noise. The muscle noise (200 different realiza-
tions of length 1560 samples, randomly chosen from the
set of 5000000 samples) were added to a clean cycle of
ECG signal at different, known levels of GSNR (10 dB,
15 dB, 20 dB, 30 dB, 40 dB). After filtering procedure,
results were averaged separately for both this groups. The
tables present mean values of NMSE factor and SNRimpr.
The Savitzky-Golay filter, RLS filter and median filter are
the reference filters.

Discussion and conclusions

The illustration of artificial impulsive noise added to
the ECG cycle is plotted in Fig. 1. An example of the
signal shape after filtering is presented in Fig. 2.

The artificial impulsive noise

This example shows the effectiveness of proposed fil-
ter when ECG cycle is corrupted with an impulsive noise
modeled by the symmetric α-stable distributions. The re-
sults are presented in Table 1 and 2.

Nearly in the whole range of changing the character-
istic exponent the best results are obtained for the median
filter, except for α = 2 (Gaussian distribution of noise).
Then the best is common RLS filter. Good results are
also obtained when α ≤ 1.8 for proposed filter. In the
range of changing α results obtained by the proposed
filter are nearly the same, mean value of NMSE equals
2.4%. When the distribution of noise is similar to the
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Figure 1: The ECG cycle disturbed with artificial impul-
sive noise (solid line) and clean signal (dotted line).
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Figure 2: ECG cycle noisy (upper plot) and after filtering
(lower plot: A - presented filter, B - RLS filter, C - Me-
dian filter, D - Savitzky-Golay filter, E - clean signal.).

Gaussian distribution (α ≥ 1.9) the reference filters lead
to better results (smaller value of NMSE factor).

The same situation is during compering results for
SNR improvement. The best results are obtained for
the median filter, only for α = 2 the Savitzky-Golay fil-
ter leads to the best improvement. The proposed fil-
ter leads to worse results than the median filter, but for
1.5≤ α ≤ 1.7 the proposed filter is better than other ref-
erence filters.

The muscle noise

This example shows the effectiveness of proposed fil-
ter when ECG cycle is corrupted with the muscle noise.
The results are presented in Table 3 and 4. The results ob-
tained under these conditions are different than previous.
The best results are obtained for reference filters (the RLS
filter and the Savitzky-Golay filter) for the highest value
of GSNR. These filters introduce the smallest distortions
(lower values of NMSE) in the filtered signal. The value
of NMSE factor for the proposed filter it nearly two times
greater than for the smallest value obtained with one of
the reference filters. When GSNR is lower, all used fil-
ters lead to nearly the same results, but the proposed filter
leads to a little worse results (higher value of NMSE and

Table 1: The evaluation of the NMSE factor for the pro-
posed filter (MLOC), the RLS filter, the median filter and
the Savitzky-Golay filter (sgol) for GSNR=10 dB. ECG
signal is disturbed with noise modeled with α-stable dis-
tribution

average NMSE [%]
α MLOC RLS med sgol

N=21 N=21 order=2, N=35
1.5 2.63 179.95 1.25 210.40
1.6 2.48 12.13 1.23 14.61
1.7 2.47 30.62 1.24 35.22
1.8 2.41 2.09 1.24 2.51
1.9 2.29 1.38 1.21 1.64
2.0 2.12 0.80 1.15 0.91

Table 2: The evaluation of the SNRimpr factor for the pro-
posed filter (MLOC), the RLS filter, the median filter and
the Savitzky-Golay filter (sgol) for GSNR=10 dB. ECG
signal is disturbed with noise modeled with α-stable dis-
tribution

average SNRimpr
α MLOC RLS med sgol

N=21 N=21 order=2, N=35
1.5 18.47 12.88 21.66 11.95
1.6 15.79 12.90 18.84 11.93
1.7 13.21 12.83 16.20 12.01
1.8 11.22 12.72 14.12 11.93
1.9 9.78 12.65 12.56 11.95
2.0 8.15 12.48 10.82 11.91

Table 3: The evaluation of the NMSE factor for the pro-
posed filter (MLOC), the RLS filter, the median filter and
the Savitzky-Golay filter (sgol) for the muscle noise

average NMSE [%]
GSNR MLOC RLS med sgol

N=21 N=21 order=2, N=35
10 9.32 5.90 6.01 7.58
15 3.70 2.02 2.12 2.58
20 2.00 0.97 0.98 1.16
30 0.70 0.14 0.09 0.07
40 0.66 0.10 0.02 0.01

smaller SNR improvement). The proposed filter doesn’t
offer good the SNR improvement. Better SNR improve-
ment offers the reference filters than the proposed filter.

Conclusions

The present filter offers a useful and robust approach
to suppress the different kind of an strictly impulsive
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Table 4: The evaluation of the SNRimpr factor for the pro-
posed filter (MLOC), the RLS filter, the median filter and
the Savitzky-Golay filter (sgol) for the ECG cycles dis-
turbed with the muscle noise.

average SNRimpr
GSNR MLOC RLS med sgol

N=21 N=21 order=2, N=35
10 2.43 5.57 5.29 4.79
15 0.99 4.99 4.86 4.72
20 -1.33 3.89 4.20 4.64
30 -9.56 -1.77 1.33 3.84
40 -18.67 -10.00 -4.28 1.15

noise. The results obtained for artificial impulsive noise,
when α ≤ 1.7 show the advantage of the proposed fil-
ter in the field of the smallest distortions introduced to
filtered signal and good SNR improvement. The second
advantage of the proposed filter is a small computation
effort. Worse results obtained for the muscle noise can be
caused the fact that a level of impulsiveness in the mus-
cle noise is not so high (equivalent of the characteristic
exponent α ≥ 1.8) and higher contribution of Gaussian
distribution.

To conclude, the proposed filter can effectively sup-
press the impulsive noise in biomedical signals.
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