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Abstract: Electromagnetic impedance tomography 
(EMIT) is a new imaging technique. An image is 
reconstructed on the basis of measurements of 
electrical potential at the boundary of an object by 
means of electrodes and a magnetic field using coils  
around or over the object. A sensitivity function was 
evaluated for EMIT. It was compared for 2D and 3D 
objects. Analysis was performed on the basis of 
singular value decomposition (SVD) of the so-called 
forward operator. It was found that a 3D case is 
considerably more ill-conditioned that a 2D one. 
 
Introduction 
 

EMIT was proposed by Levy [6]. It is an extension 
of traditional electrical impedance tomography (EIT) on 
additional magnetic measurements. A reconstructed 
image is created on the basis of data obtained from 
measurements of electrical potential distribution at the 
boundary by means of electrodes and an exterior 
magnetic field using coils. EMIT is an example of the 
joint inversion technique, the integration of various 
groups of data sets into a single inverse algorithm, 
which is an efficient way to overcome the drawback of 
the sparseness of data in ETI  that results when a limited 
number of electrodes is used. It is anticipated that 
additional measurements allow an underdetermined EIT 
problem to be turned into a well-posed one with a 
reasonable condition [6].  

Sensitivity illustrates the relation between measured 
data and conductivity distribution inside the object 
under study. Analysis of sensitivity is an important 
means of testing the quality of a given model and an 
evaluated solution. It enables the accuracy and 
instability of the reconstruction solution to be indicated 
and consequently also ensures the correct interpretation 
of given results.  

More information can be gained using the singular 
value decomposition (SVD) method. In this process a 
significant role is played by eigenvalues and singular 
values, the main products of SVD decomposition.  

It is known that the mesh model is of considerable 
importance in the reconstruction process. It has an 
important influence on the quality of the reconstruction 
image. Of great significance also is the geometry of the 
elements of the mesh model and their number and 
design in space. These properties determine how real 
the current density will be inside the object studied. The 
analysis performed on paper is an attempt to ascertain 

the difference between solutions evaluated on the basis 
on various mesh models. 
 
Methods 
 

The essence of the forward problem in EMIT is to 
determine the potentials and magnetic field resulting 
from the injected current. The forward operator 
describing the dependence of the measured data on the 
conductivity of the imaging object can be defined by the 
following equation: 

 
( ){ } δσ += xd F , (1) 

 
where: d  is a vector of data, {}⋅F  is the forward 
operator, ( )xσ  is the conductivity of the object and δ  
is the noise. For the discrete and linear case considered 
here the forward operator can be treated as a sensitivity 
matrix ( )σF : 
 

( )σσFd = . (2) 
 
When two different measurement data sets are included, 
potential ev , and magnetic field mv , the forward operator 
for EMIT can be given by the following equation: 
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where eS  is the sensitivity function evaluated using the 
relationship published by Geselowitz [2,3]: 
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where φ and ψ are potentials calculated for different 
distributions of conductivity. mS is the sensitivity 
function for the magnetic signal. 

Assuming that the current is quasi-static, the 
divergence of the current density vanishes: 
 

0=⋅∇ J .  
 
In this case the Biot-Savart law can be used to calculate 
the magnetic field: 
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where: 0µ - the magnetic permeability of the free 
space, i – current, R – the distance between current 
element and the measurement coil. R is equal to: 
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where: (x0,y0,z0) is the location of the coil, (xi,yi,zi) and 
(xj,yj,zj) are co-ordinates of the current element nodes, ix, 
iy and iz are unit vectors. Thus it is assumed that the 
distance is calculated as the distance between the centre 
of the element dl and the coil centre. The length of R is 
assigned as |R|. The length of element dl is given as: 

 
( ) ( ) ( ) zjiyjixji zzyyxxd iiil −+−+−= .  

 
The magnetic field is, therefore, calculated as the sum 
of all components associated with all currents flowing in 
each FEM element. Thus 
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where index k indicates the certain branch of each FEM 
element. Taking the approach proposed by Mura and 
Kagawa [7], current flowing between two nodes, or 
branches, can be evaluated from knowledge of the 
geometry and conductivity of the FEM element: 
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Further, it is assumed that only one component of the 
magnetic field, such as Bz., is measured. As a result, a 
sensitivity can be calculated: 
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where: k

ijC  - geometric co-efficient for the branch 
between nodes i and j of the kth element, 

ji VV , - 

potential at the ith and jth node, kσ  conductivity of the  
kth element. 
 
Models 

 
Both 2D and 3D models were used in the 

simulations. These were discretised on triangular and 
tetrahedric elements, respectively (fig. 1). 

 
 
Figure 1: 3D mesh model divided into layers. 
 
3D mesh models were examined for a different 
geometry. Detailed information about the geometry of 
3D models may be found in the following table: 
 
Table 1: Detailed information on the 3D models. 
 

Number 
of layers 

Number of mesh 
elements 

Number of mesh 
nodes 

I 1416 406 
II 2696 659 
III 4104 934 

 
The 2D mesh model is presented in fig. 2. It is 
constructed in such a way that the arrangement of 
triangular elements and point co-ordinates are the same 
as on the top cover of the 3D mesh model presented in 
fig. 1. 
 

 
 
Figure 2: Top cover of the 3D mesh model with 
localisation of the electrodes and coils. 
 
The 2D and 3D mesh models have identical sets of 
electrodes (37) located at the surface of the object under 
consideration. They also have the same array of coils 
(54), which is located over the surface of the object. The 
height of the magnetic sensors above the plane parallel 
to the x-y plane equalled 0.1 for all the simulations 
carried out.  
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 Singular value decomposition technique 
 
Singular value decomposition (SVD) is a particular 

case of orthogonal decomposition of every matrix 
nmRA ×∈  such as:   

 
TVUA Σ=  (9) 

 
where mmRU ×∈  and nnRV ×∈  are unitary matrices 
referred to as left and right singular vectors 
respectively, and the nmR ×∈Σ   diagonal matrix is in the 
form: 
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where rrRD ×∈ and r=rank(A). Diagonal elements of the 
Σ  matrix are positive singular values: 
 

iii λ=Σ      0...21 ≥≥≥≥ rλλλ . (11) 
 
It follows that 
 

 iii uAv λ/=     and   iii
T vuA λ= . (12) 

 
where TA is the transpose matrix of A. In addition, the 
pseudo-inverse of matrix A is defined as: 
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Sensitivity Analysis 
 
The solution of the inverse problem given from equation 
(2) equals:  
 

( ) dF 1~ −= σσ , (14) 
 
The estimated conductivity distribution ( )xσ~  from the 
given data will be different from the true model. The 
dependency of the conductivity distribution ( )xσ~  on the 
measurement errors can be precise but it varies with 
respect to small changes in d . By inserting equation 
(13) into equation (14) the estimated parameter can be 
obtained in terms of SVD products:  
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(15) 

The instability of the reconstruction solution when the 
equations become almost linearly dependent is nicely 
illustrated by equation (15). For a large number of 
measurements many of the computed singular values 

are very small, in which case the components of the 
spectrum ( )xσ  related to them are stifled by the 
measurement process.  Singular values tending to zero 
make no contribution to the measured values and inflate 
the reconstruction solution when a set of data contains 
measurement errors δ . 

Analysis of the spectrum of singular values allows 
round-off errors in the computed values to be made 
closer.  It has been shown [8] that perturbations δ  of 
any size in any matrix cause perturbations of roughly 
the same size in its singular values: 

 
Aδδ =Σ  (16) 

 
The perturbations are measured relative to the norm of 
the matrices, which is equal to the largest singular 
values, 

12
σ=A  . All random perturbations in matrix A 

caused by perturbations δ  are smaller than Aε , where 

ε  is the floating-point accuracy parameter (the 
difference between the largest and the smallest singular 
value). Round-off error in the computed values should 
are less thanε . Hence, for small perturbations their 
influence on them may not be visible in assuming 
exactness.  

The largest changes in the estimated conductivity 
spectrum which results from a small change in the 
observed data can be estimated by the norm of +A , 

which, owing to the properties of SVD, equals:  
 

1−+ = sA λ , (17) 
 
where sλ is the smallest singular value close to zero [1].  

The relative changes in conductivity distribution can 
be estimated by the condition number, defined as the 
ratio of the largest singular value to the smallest: 

 

( )
s

Acond
λ
λ1= . (18) 

 
A condition number gives a simple indication of the 
accuracy of the reconstruction results. It is closely 
related to the size of A and is greater for a non-
symmetric matrix. A high value of the condition number 
indicates extremely sensitive system equations to the 
values of system parameters. Generally, iλ  for i=1, ... s 
decays exponentially with i, so for a large s the 
condition number is extremely high and illustrates the 
ill-conditioned nature of the problem. If the condition 
number is greater than the relative error of the 
measurements, it may turn out the reconstruction result 
may be completely useless. A better reconstruction 
would be the sum of only those terms of equation (18) 
which have values of iλ  above a certain threshold δ , 
which should be smaller than the relative error of the 
measurements. The larger value of the minimum 
singular values makes the reconstruction problem more 
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 controllable and resilient. This is why the smallest 
singular value is sometimes known as the “Morari 
Resilience Index”. 

Sensitivity is determined by the optimal current 
pattern, which depends on object geometry and 
conductivity distribution [5]. The eigenfunction with the 
larger singular value indicates optimal current injection. 
In this case, the larger singular value informs us when 
two objects are distinguished from each other by 
measurements of precisionε . They are distinguished if  

ελ >1  and they are undistinguishable if ελ <1  [4]. 
 
Results 
 

The singular values of the EMIT forward operator 
were calculated for various models as presented in 
fig. 1.  
 
Large singular values of the sensitivity matrices are 
attributed to the conductivity value adjacent to the 
surface of the model considered, whilst small ones are 
attributed to deep areas (located distant from the 
electrode and coil matrix) within the model. It can easily 
be noticed that changes in conductivity within this 
volume are almost undetectable. 
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Figure 3: Singular values of the forward operator matrix 
for a) a 2D model, and 3D models containing b) 1 layer, 
c) 2 layers, and d) 3 layers (log scale). 
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Figure 4: Condition number of the forward operator 
matrix for 1) a 2D model, and 3D models containing 2) 
1 layer, 3) 2 layers, and 4) 3 layers (log scale). 

 
The condition number for different reconstruction 
models is presented in fig. 4. It can be observed that the 
best value of the condition number was obtained for the 
2D model. However, it increases rapidly with the 
complexity of the reconstruction model. The highest 
values of the condition number were obtained for the 
3D reconstruction models with 2 and 3 layers. For these 
models small errors in measurement can produce large 
errors in the conductivity distribution of the 
reconstructed image. 
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Figure 5: The norm of the forward operator matrix for 
1) a 2D model, and 3D models containing 2) 1 layer, 3) 
2 layers, and 4) 3 layers (log scale). 
 
In fig. 5 it may clearly be seen that the largest changes 
in the estimated conductivity spectrum, which result 
from small changes in the observed data, can be 
estimated for more complex mesh models. This means 
that for them the reconstruction problem is extremely 
ill-posed.  
 
Discussion 
 

Sensitivity analysis is an important step in the 
reconstruction process. It can provide significant 
information about the properties of the forward operator 
matrix. It is a useful tool for finding the relationship 
between the design of the mesh and the distribution of a 
given set of data. Analysis of singular values enables 
sensitive areas of the mesh models to be identified and 
allows for sensitivity to perturbation of the data. The 
distribution of singular values can also inform us of the 
conditioning of the problem considered and provide an 
indication of the accuracy of the reconstruction image 
and the instability of the inverse solution.  

Information obtained from the sensitivity analysis 
is important for the modification of the mesh model. 
The sensitivity analysis allows image resolution to be 
increased and noise sensitivity to be reduced by 
reducing the condition number of the inverse problem. 
Analysis of the singular value spectrum is also 
significant for correct interpretation of the 
reconstruction result.  
 
 
 
 
 
 
 

Conclusions 
 

The exactness of the reconstruction image should 
be greater but less real for the 2D model. The difference 
between 2D and 3D in the sensitivity of the system 
solution ranges from 210  to 410 , the highest value being 
for the 3D reconstruction model with 3 layers. The ill-
conditionig of the reconstruction problem increases with 
the complexity of  model mesh. In this case a given 
solution is also more sensitive to perturbations in the set 
of data.  
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