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Abstract: The auditory periphery system recieves a 
one dimensional acoustical signal that describe how 
the local pressure varies with time.  However,  this 
one dimentional signal information is then somehow 
unfolded into a two dimentional time-frequency 
plane that tells us when which frequency occurs. 
Therefore, hearing process is thus based on some 
compromise between time localization and frequency 
localization  and  a kind of  time-frequency or 
wavelet type transformation is done in auditory 
signal processing. In this study the similarities 
between auditory transform based on auditory 
physiological process and wavelet transform is  
introduced. Specially band pass filter bank property 
and variable time and frequency resolution with the 
signal frequency are considered. 
 
Introduction 
 
In the inner ear or cochlea, sound is detected by an array 
of several thousand hair cells that convert mechanical 
vibrations into electrical activities. The cochlea is often 
thought of as a bank of filters because it performs 
frequency analysis using a frequency to place mapping 
along the basilar membrane. That is, each place along 
the membrane has a characteristic frequency, fc, for 
which it is maximally displaced when a pure tone of that 
frequency is presented as an input. As a filter bank, the 
cochlea exhibits the following characteristics:  (a) Non-
uniform filter bandwidths; Frequency resolution is 
higher at the lower frequencies (near the apical end of 
the cochlea) than at high frequencies (near the basal end 
of the cochlea). For an equivalent filter bank 
representation, this implies narrower filters that are 
more closely spaced together for low frequencies, and 
broader filters that are spaced further apart for high 
frequencies. (b) Asymmetric frequency response of 
individual filters; for a particular place along the basilar 
membrane with characteristic frequency fc, the response 
to fc+∆f is lower than the response to fc-∆f. For a 
bandpass filter centered at fc, this can be interpreted as 
an asymmetric magnitude response, with sharper cutout 
on the high frequency side. (c) Level-dependent 
frequency response of individual Filters; as mentioned 
in the previous section, basilar membrane motion is 
compressive and non-linear, meaning that doubling the 
input stimulus intensity does not result in doubling of 
membrane displacement. From a Filtering perspective, 
this implies that the peak gain of the filter centered at fc 

decreases as the level of the input stimulus increases. 
Another observation is that the magnitude response 
becomes broader and more symmetric with increasing 
sound levels. 

 The individual hair cells, and the auditory nerve 
fibers to which they are connected, are tuned to specific 
frequencies. [1] The population of auditory nerve fibers, 
thus, provides us with a frequency analysis of sound 
waveforms in the environment. Each auditory nerve 
fiber may be considered as a filter that signals 
information about the temporal structure of stimuli are 
within its preferred frequency range. As engineers have 
understood for years, the design of a filter involves an 
inevitable trade-off between the precision of frequency 
tuning and temporal tuning. A tone consists of cyclical 
fluctuations of air pressure, and to obtain an accurate 
frequency estimate, many cycles must be integrated. But 
a longer integration period means a decrease in the 
temporal accuracy of the filter in other words, a filter 
cannot signal both the frequency and the timing of a 
sound with arbitrary precision. Yet discriminations of 
the real world sounds often require accurate 
measurements of both frequency and timing. Precise 
temporal information is also important for the sound 
localization, which in many cases depends on time-of-
arrival differences between the two ears. The challenge 
for the auditory system, then, is to find the right trade-
off between timing and frequency analysis [2]. 

 

 
Figure 1: The frequency tuning curves of auditory nerve 
fibers superimposed and aligned with their approximate 
relative points of innervations along the basilar 
membrane 
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 Materials and Methods 
 
The membrane displacement and fluid pressure in the 
lower chamber are shown schematically in Figure 2. 
The wave is said to be in the long-wave region when its 
wavelength is long with respect to the height of the 
duct. In this region, the fluid particle motion is 
constrained to be essentially horizontal, like a wall of 
fluid moving back and forth in a pipe.  When the 
wavelength becomes short with respect to the height of 
the duct, the wave is said to have entered the short-wave 
region. At this point, the wave propagates more like 
ripples on the surface of a deep pond, where the fluid 
particles trace out elliptical trajectories, with greater 
amplitude near the surface. Finally, the wave dies out in 
the highly damped cut-of region. [3] 
 

 
 
Figure 2: Detail of wave propagation, showing the 
membrane displacement and fluid pressure along a 
vertical slice through the lower chamber, for a 
sinusoidal stapes vibration. The amplitude of the 
membrane displacement wave is small near the base, 
reaches a peak at the best place, and dies out quickly in 
the cut-of region. Deviations in fluid pressure from the 
resting pressure are shown as dark or light deviations 
from gray. The amplitude of the fluid pressure wave is 
large near the base, and gradually decays through the 
long-wave and short-wave regions, and dies out quickly 
in the cut-of region. In the short-wave region, the 
amplitude of the pressure wave decreases approximately 
exponentially away from the partition.  
 
 In Figure 3 (b) the isovelocity curve from a point on the 
guinea-pig cochlea is compared to neural isoresponse 
curve from a spiral ganglion cell in the guinea pig. This 
famous measurement, [5], shows that the sharp tuning 
of an auditory nerve fiber is determined at the 
mechanical level of the basilar-membrane vibration.  
Since the system is nonlinear, these isoresponse tuning 
curves are not directly comparable to transfer function 
data, as pointed out by Lyon [7 ]. 
Figure 4 shows tuning curves of auditory periphery and 
the combinations of band pass filter bank .In 
comparison with wavelet filter bank it could be 
concluded that both systems are decomposing input 
signal into different frequency bandwidth and the 
coefficient of bandpass filters considered as a 
representation of the signal. The frequency response of 
the tuning curves indicate that like wavelet mother 
function and daughter functions, each frequency 
response of the tuning curve could be obtain  by shifting 

and translation of certain tuning curve frequency 
response.[7], [8] 
 

 
(a) 

 
(b) 

 
Figure 3:(a) A comparison of isovelocity response from 
a guinea-pig basilar membrane and neural isoresponse 
from a guinea pig spiral ganglion cell. Both curves show 
the level of input stimulation required to maintain a 
constant output response (b) Rhode’s data, taken from a 
live squirrel monkey using the Mossbauer technique. 
The two curves indicate responses of the basilar 
membrane at two different positions, x1 and x2, on the 
basilar membrane, where x1 is 1.5 mm closer to the apex 
than x2. The best fit lines in the amplitude figure were 
drawn by Rhode. 
 

 
 
Figure 4: Cat neural tuning curves from Eaton Peabody 
Lab. The pressure scale, in dB, has been reversed to 
make the curves look like filter transfer functions. The 
response “tail” for the 6 kHz neuron is the “flat” region 
between 0.1 kHz and frequency in the tail the sound 
must be above 65 dB SPL (which on this scale is down) 
before the neuron will respond. 
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 It is well known from Fourier theory that a signal can be 
expressed as the sum of a possibly infinite, series of 
sines and cosines. This sum is also referred to as a 
Fourier expansion. However, the big disadvantage of a 
Fourier expansion is that it has only frequency 
resolution and no time resolution. This means that 
although we might be able to determine all the 
frequencies present in a signal, we do not know when 
they are present. To overcome this problem in the past 
decades several solutions have been developed which 
are more or less able to represent a signal in the time 
and frequency domain at the same time. The wavelet 
transform or wavelet analysis is probably the most 
recent solution to overcome the shortcomings of the 
Fourier transform. In wavelet analysis the use of a fully 
scalable modulated window solves the signal-cutting 
problem. The window is shifted along the signal and for 
every position the spectrum is calculated. Then this 
process is repeated many times with a slightly shorter 
(or longer) window for every new cycle. At the end, the 
result will be a collection of time-frequency 
representations of the signal, all with different 
resolutions. Because of this collection of representations 
we can speak of a multiresolution analysis. In the case 
of wavelets we normally do not speak about time-
frequency representations but about time-scale 
representations. Scale being in a way the opposite of 
frequency, because the term frequency is reserved for 
the Fourier transform. The wavelet analysis described in 
the introduction is known as the continuous wavelet 
transform or CWT. More formally it is written as: 
  

(1) 
where * denotes complex conjugation.  
 
This equation shows how a function f(t) is decomposed 

into a set of basis functions , called the wavelets. 
The variables s and , scale and translation, are the new 
dimensions after the wavelet transform. The wavelets 
are generated from a single basic wavelet (t), the so-
called mother wavelet, by scaling and translation: 

    (2)  

In (2) s is the scale factor, is the translation factor and 
the factor s-1/2 is for energy normalization across the 
different scales. It can be shown that the transform 
which is done in the cochlea could be estimated by a 
kind of wavelet transform. The two main roles of the 
cochlea are to separate the input acoustic signal into 
overlapping frequency bands, and to compress the large 
acoustic intensity range into the much smaller 
mechanical and electrical dynamic range of the inner 
hair cell.  

Variations of air pressure at the ear are mechanically 
transferred into movement of the basilar membrane 
which is located in the cochlea. The basilar membrane is 
equipped with hair cells that react on deviation of the 
membrane from its rest position if the cochlea is 
imagined unrolled the basilar membrane extend along  
real axis. Sound information at any point can be 
represented as real function B(x,t), the deviation of the 
membrane inside the cochlea at position x and time t. 
Experimental measurements show that for a sinusoidal 
stimulus the  response might be: 
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Which it means that the dependency of ψω ( ) is 
approximately a logarithmic shift so for input acoustic 
signal f(t) which has got its Fourier Transform F(ω) 
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By substituting f(t) in  (3) and putting (4) as f(t) the 
B(x,t) function could be written as follow: 
 

∫= )(
2
1),( ω
π

FtxB ωωψ ω
ω dex tj))log(( − (6) 

∫∫ −= ττ
π

ωτ deftxB j)(
2
1),(  

               ωωψ ω
ω dex tj))log(( −   (7) 

 
By some mathematical manipulation of (7), following 
term will appear: 
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By considering x=-log s, the final equation for basilar 
membrane movement could be written as: 
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s
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Therefore, the transform of acoustic signal from the 
eardrum to the cochlea with a logarithmic scale along 
the basilar membrane could be approximated by  
continuous wavelet transform. Physiological 
observation justify that, the auditory system has got sort 
of wavelet like transform behavior. Neural tuning is 
measured by measuring the spiking activity in an 
auditory nerve fiber as a function of the frequency and 
intensity of a probe search tone. The locus of threshold 
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 intensities that cause the neuron to fire slightly above its 
spontaneous rate is called the neural tuning curve. The  
superscript indicates that the probe intensity is at 
threshold. Each neuron has such a tuning curve, which 
is tuned to its “best” characteristic frequency.[8] 
 
Results 
 
As it was shown the wavelet transform perform the log-
linear frequency analysis and constant quality factor and 
can be used as an approximation of auditory acoustic 
signal transform. The cochlear impulse response was 
used for choosing the analyzing wavelet transform. The 
impulse response at 20mm from the oval window was 
selected as a wavelet function because its peak 
frequency about 1000Hz and in log-linear scale this 
frequency is almost at the center of the audible range. 
By this consideration an auditory wavelet transform 
could be realized.  
 
Discussion 
 
A comparison between the auditory periphery acoustic 
signal transform and wavelet transform shows that, also 
there are similarities especially in band-pass filter bank 
property and variable time and frequency resolution 
with the signal frequency, but the experimental 
measurement  shows that some differences exist, and 
the main difference is in the quality factor. Wavelet 
transform is a filter bank with constant quality factor, 
but physiological research in hearing system found the 
quality factor which is changing and highly influenced 
by the activities of the hair cells. 
 
Conclusion 
 
The wavelet transform performs the log-linear 
frequency analysis with constant quality factor filtering 
and can therefore simulate the auditory model. The 
cochlear tuning curve is used for choosing the analyzing 
wavelets or mother functions which determine the 
overall filter shape. The impulse response at medium 
distance from oval window could be chosen as an 

analyzing wavelet because its peak frequency is almost 
at the center of audible range (on a log-linear scale) 
Figure 1 shows the impulse responses (in inverse scale) 
of auditory tuning curves. These responses satisfy the 
admissibility condition so they can be used as a mother 
function. So analysis and synthesis stage could be 
implemented. 
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