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Abstract: Pulse wave propagation in the models of 
the intraorgan arterial beds is investigated. For the 
beds without anastomoses the self-similar tree-like 
branching systems of viscoelastic tubes is considered 
whereas for the beds with loops the topology and 
geometry of the vasculature is measured on plastic 
casts of the arterial vasculatures. The stationary 
Poiseuille flow in each tube and the Womersley 
model of the time-dependent flow in a thick-walled 
distensible tube is used for calculations of the 
hydraulic impedance and wave input admittance of 
the vasculatures. It is shown that the resonant 
harmonics of the input admittance, wave intensity 
analysis and the pressure-flow loops can be used in 
medical diagnostics on the pressure and flow curves 
measured by the ultrasound devices at an arbitrary 
cross-section of the feeding artery of the intraorgan 
vasculature. The biomechanical interpretation of the 
pathological variations of the parameters is 
presented.   
 
Introduction 
 

Mathematical models of steady flow and wave 
propagation in the systems of distensible tubes have 
been developed as the models of blood circulation [1-5]. 
Blood flow in the intraorgan vasculatures have been 
investigated basing on the fractal tree-like systems of 
tubes [6-8] but validity of the approach has been 
analyzed for the pulmonary arterial tree mostly [9]. 
Recent investigations revealed the new data concerning 
the structure of coronary arterial beds [10] and 
branching fractal networks [6-8], the differences in 
hydraulic and wave properties of vasculatures with 
anastomoses and without them [11-13], resonant 
properties of the arterial beds of different inner organs 
[14-16]. The data can be used for novel methods of 
pulse wave diagnostics elaboration as well as 
biomechanical interpretation of traditional pulse 
diagnostics of oriental medicine. 

Here the models of the intraorgan vasculatures based 
on the morphometric data on geometry and topology of 
real arterial beds of the main inner organs are presented. 

 
Materials and Methods  
 
    Hydrodynamic properties of the branching systems of 
tubes are characterized by the hydraulic impedance 

QPZ =  and input (wave) impedance 

aain Q/PZ =  where Q,P  are average pressure and 

flow rate, aa Q,P  are pressure and volumetric rate 

amplitudes at the inlet of the feeding artery. When the 
input signal )t(P  (or )t(Q ) at the inlet of the feeding 
artery is considered as Fourier series, the spectra of the 

input impedance )n(Z in  where n  is the number of 

harmonics can be considered.  The values )n(Z,Z in  

can be calculated for an arbitrary tree-like system of the 
tubes by consequent calculations of the impedances of 
the tubes which are in parallel and series connection 
[17]. The data on lengths, diameters, wall thickness and 
elasticity have to be used for calculations. The detailed 
morphometric data include several thousand numbers 
obtained by plastic casts of the arterial bed of an 
individual [5]. Real vasculatures of different individuals 
undergo numerous variations on topology and 
geometry. In that way modelling of the arterial beds 
using some regularity in construction of the arterial 
systems  is an important problem for developing the 
general models which are representative for the 
vasculature of a given inner organ and insensitive to 
possible individual variations and for using them in 
clinical applications and medical diagnostics.  

In most cases the feeding arteries of the vasculatures 
are accessible for the non-invasive measurements. The 
volumetric rate )t(Q , linear velocity )t(U  and 

diameter oscillations )t(d can be measured at the 
cross-section of the feeding artery by ultrasound 
devices. Pressure curves )t(P can be restored by the 

curves )t(d  with wall tracing techniques. The 

measured signals )t(P , )t(U  can be used for 
separation of the travelling waves into their forward 

++ U,P and backward −− U,P components [18]. The 

curves )t(U),t(P −−  contain information about flow 
conditions in the organ that can be used in clinical 
diagnostics after the biomechanical interpretation of the 
wave parameters is carried out.  
    The general relationships between the lengths jL  

and diameters jd  of the consecutive vessels  and 

between the diameters j,d 20− of the vessels in each 
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 bifurcation have been obtained as statistical regularities 
in numerous measurements and experiments [19-22]. 
Here we introduce the relationships as follows: 

γ γξ+ξ= 101 jj dd , 
γ γξ+= 102 jj RR , βα= jj dL , 

where { } { }jjjj d,dmaxd,dmin 2121=ξ  is the 

branching asymmetry coefficient, 3=γ  (Murray’s 

law), βα,  are constant for a given vasculature [9]. The 

arbitrary deviations of jL  and jd  within the 

physiological range ( %10±  for jd  and %30±  for 

jL ) have been introduced for investigation of the role 

of individual variations in geometry of the arterial beds.  
    The Poiseuille flow of a viscous fluid through the 
rigid tube is considered as a model of steady blood flow. 

Here 4−= jjjj RLkZ  is the hydraulic impedance  of 

the j-th tube, where )R(/k jj µπ= 8 , µ  is blood 

viscosity and the dependence )R( jµ  corresponds to 

Fahreus-Lindquist effect. In the wave motion the values 

jZ  correspond to the harmonics n=0 as well. The 

Womersley model of the time -dependent blood motion 
of a viscous incompressible liquid in the thick-walled 
viscoelastic cylindrical tube gives the following 
relations for the pressure jP  and volumetric rate jQ  in 

the j -th tube (taking into consideration pulse wave 
reflections at the end of each vessel in the system): 
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i
jjj σ−ρ−= θ  is 

the wave velocity, ix  is the axial coordinate, 

)c()d(Y jjj ρπ= 420  is the characteristic 

admittance, jΓ  is reflection coefficient, θσ ,,E jj  are 

elasticity modulus, Poisson’s ratio and viscosity of the 
wall material, ρ  is  blood density, jh  is the wall 

thickness.  
     For the models of tree-like branching systems and 
real vasculatures without anastomoses the total values  

Z  and inZ  have been calculated starting from the last 

order tubes  [17]. For the models and vasculatures with 
anastomoses the pressure and flow continuity conditions 
at each bifurcation together with relations (1)-(2) for 
each tube give the nonlinear system of algebraic 

equations with complex coefficients for 0
jP  and jΓ  

[11]. The numerical solution of the system has been 
obtained by modified Newton’s method. 
    In that way the pressure and flow curves )t(P , 

)t(U  in the feeding arteries of the models can be 

computed. The waves ±± U,P  and intensities ±I  of 
the forward and backward components are calculated as 
follows [18]: 

2/)cUP(P ρ±=± ,  

c/)PcU(U ρ±ρ=± 2  

∫ ρ±
ρ

±=± dt)cdUdP(
c

)t(I 2

4
1

                          

Two types of vasculatures have been considered: 
tree-like systems for the coronary, brain, liver and 
kidney arterial beds (Figure 1a) and the systems with 
numerous loops for the large and small intestine (Figure 
1b). Geometrical parameters of the vasculatures have 
been measured on plastic casts of the arterial beds of the 
main inner organs of a human.  

  
a                                        b 

Figure 1: Intraorgan vasculatures of the spleen (a) and 
large intestine (b) of a human  
 
Results and discussions 
 
     The parameters jj dh λ= , 20140 .. −=λ , 

51096 ⋅−= )(E  Pa and  61021 ⋅−= )(E  Pà for 
the arteries of elastic and muscle types respectively have 
been used for calculations. The scatter of distances from 
the inlet of the feeding artery monotonically increases 
while  ξ  decreases. For the symmetrical trees this 
scatter is relatively small and they will exhibit acute 
resonant properties because of quite equal times of the 
backward pulse waves travelling from different 
bifurcations with the same branching orders. This means 
that the results for asymmetric trees are more realistic. 

    The dependence )f(Y * , where 0Y/YY in
* = , 

1−= inin ZY , f  is the frequency is presented in Figure 2 

for 200 .L =  m, 0300 .d =  m, 120 ÷=ξ . . The 

results of the calculations have shown that the influence 
of asymmetry in the average lengths of the arteries is 
negligible. All the changes are observed within the same 
harmonic and the variations do not exceed 2± Hz. 
    For the pulse rate 60–75 1/min (the frequency of the 
main harmonic of the pulse wave 25110 .f −= ) the 

case depicted in Figure 3 corresponds to the resonance 
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 at the 5-th harmonic. The first maximum of )n(Y *  
corresponds to the main resonant frequency of the 
intraorgan vasculature in terms [14-16]. At wide 
variation of ξ  the main frequency variations do not 

exceed 6± Hz and correspond to the same harmonic. In 
this case the modulus of impedance reaches its 
maximum at the 4-th harmonic. In that way the 
correspondent component 4Q  of the flow rate 
penetrates in the vascular bed of the organ. 
Controversially, the modulus of impedance is minimal 
at the 7-th harmonic and so this component is  mainly 
reflected by the vascular bed. The corresponding 
enhancement of the 7-th and weakening of the 4-th 
harmonics can be measured on any peripheral artery 
out-of the vascular tree of the organ with the ultrasound 
devices.  

 
Figure 2: The dependence )f(Y *  for  

8.0;6.0;4.0;2.0=ξ   (numbers 1–4 respectively) 
 

 
Figure 3: )n(Y *  dependences for different reflection 

coefficient 20406080 .;.;.;.=Γ  (numbers 1-4) 
 

    The maximum )n(Y *  corresponds to the 4-th 

( 108 −=f Hz) and 8-th ( 160128 −=f Hz)  
harmonic . According to the terminology [14–16], 

84;i =  are the main and addition resonant harmonics 
for the pulse diagnosis. The set of harmonics is the same 
for different values b,a,ξ  and depends on the length 

0L  of the feeding artery. This result conforms to the 

experimental observations [15].  
    The calculations revealed that even slight variations 
of the reflection coefficient led to noticeable changes in 

the amplitudes of the resonant harmonics. The real and 
image parts of the reflection coefficient

 )Im(),Re( ΓΓ
 
describe the resistive and capacitive 

properties of the microcirculatory bed. Thus, the 
individual scattering of geometrical parameters of the 
bed is insignificant, whereas any pathological variations 
caused considerable alterations of the amplitudes 
corresponding to the resonant harmonics of the effective 

admittance )f(Y * .  

    When 0=Γ j  pulse wave reflection at the 

bifurcation is absent (a well-matched junction). When 
1=Γn  (reflection at the closed end of the tube) the 

relation (2) gives 0=jQ  for the downstream blood 

flow.  In real vascular beds the 20.)Re( n ≤Γ  while 

in the extraorgan arteries 0~)Re( nΓ  [23]. When 

we introduce the terminal admittance 
)/()(YYt Γ+Γ−= 110  we can investigate the 

pathological variations of the input impedance 
(admittance).  When the capillary wall rigidity increases 
and for the patients with oedema, the value )YRe( t  

increases, and by this way the amplitude of the 
backward pulse wave increases as well. The wall 

compliance increasing causes increasing )YIm( t . 

Thus, increasing )YRe( t  and decreasing  )YIm( t  

correspond to the redundancy syndrome in terms of the 
oriental medicine. Respectively, )YRe( t  decreasing 

and )YIm( t  increasing correspond to the insufficiency 

syndrome. The biomechanical interpretation of the 
reflection conditions in the downstream vasculature can 
be useful in the nosology of the oriental medicine [11].  

Another useful result of the calculations is connected 
with interpretation of the forward-backward waves. In 
the vasculature with well-matched bifurcations the 
backward compressed wave may be produces by 
pathological occlusion of an artery or by increased wave 
reflection at the terminus (microcirculatory level). 

Extremes of the )t(I ±  curves correspond to the 
propagated and reflected waves and define the distances 
to the reflection sites. The influence of the stenosis 
(aneurisma) and the reflection coefficient at the terminal 
vessels can be distinguished. Shape of the waves  

)t(U),t(P ±± characterises the contribution of the 

multireflection into the signals. The surface area of the 
)U(P  loops and the slope angle of its longer axis are 

important diagnostic characteristics of the intraorgan 
flow (Figure 4).  
    For the vasculatures with loops (Figure 1b) the 
comparative study of eight vasculatures with significant 
differences in topology, the number of the loops (n=14-
22) and the terminal subtrees (n=83-108) has been 
carried out. The total volume of the main arteries 

V=12.98-15.88 cm3 correlates ( 9802 .R = ) with the 
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 average diameter 221 /)dd(d +=  of the feeding 

arteries with diameters 21,d . Distribution of the flow 

rate Q between the terminal subtrees depends on the 
topology of the system and the length of the arterial 
segments in the loops   (Figure 5). Compression of one 
of the branches of the feeding arteries (I-IV in fig.1a) 
leads to decreasing the flow rates in immediate 
proximity to the compressed segment at relatively 
constant blood flow in the other subtrees (Figure 5).  
 

 
Figure 4: )U(P curves for the spleen arterial bed at 

80604020 .;.;.;.=Γ  (numbers 1-4 ) 
 

 
 
Figure 5. Flow rate distribution in the terminal elements 
in the normal state (solid line) and after compression of 
the segments I-IV 
 

 

Figure 6. Dimensionless flow rate 0Q/QQ =o  in the 

vasculature after compression of the main arteries. 

Compression of the segments  I-IV is marked by the 
arrows 
    Compression of the other arteries in the system leads 
to insignificant variations of the flow rate in the 
downstream loops only. For comparison the similar 
compression of any segment in a tree-like arterial 
system leads to interruption in blood flow in the 
downstream vasculature and ischemia. Variations of the 
total blood flow rate 21 qqQ +=  relative to the 

undisturbed state 0Q  are noticeable only for the cross-

clamping of the main segments I-IV (Figure 6). 
     Occlusion of the vessels cause the most noticeable 
variations of the blood supply only in the relatively long 
segments or for the undeveloped loops which has been 
observed in 2 vasculatures. System reliability and blood 
flow in the segment j-k can be increased by additional 
loops which have been observed in 3 cases. 
    Numerical calculations of the reflection coefficients 
in the bifurcations and pressure and flow waveforms 

)x,t(Q),x,t(P jj in the arterial segments have been 

obtained, where ]L;[x j0∈  is the axial coordinate 

along the segment. The input admittance of the arterial 
system ),t(P/),t(QY ,,in 00 2121= , pressure-flow 

relationships )Q(P ,, 2121  and intensities 

)c/()cUP(I ρρ±±=± 42 of the forward and 
backward waves where c is the wave velocity have 
some differences for the vasculatures with different 
topology. Occlusion of any artery which is situated 
within the angle AOB (COB) (Figure 7) produces 

noticeable variations of 1Y  ( 2Y ) and −
1I ( −

2I ) at 

insignificant variations of the 2Y  ( 1Y ) spectrum and 

−
2I  ( −

1I ). When the clamped artery is situated within 

the angle AOC both the values  21,Y  and −
21,I  are 

changed. The approximate distance to the clamped 

vessel can be obtained from the dependences )t(I ,
±
21 . 

    For the systems with loops localization of the 
occluded artery (f in Figure 7) is  defined by the  

 
Figure 7: The topological schema of the arterial system 
of the large intestine 
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intersection of the circles a,b which radii 21,r  can be 

obtained by calculation the distances 21,L  to the 

reflection cite from )t(Q),t(P 11  and )t(Q),t(P 22  
curves respectively. The curves can be measured at any 
cross-section of the feeding arteries by ultrasound 
devices.  
 
Conclusions 
 
    Both the models of branching arterial trees and 
arterial vasculatures of inner organs possess the so-
called resonant harmonics in the amplitude spectra of 
the input impedances. Any changes in the pulse wave 
reflections at the terminal elements which characterize 
normal or pathological state of microcirculation cause 
noticeable variations of the amplitudes of the resonant 
harmonics of the given organ and negligibly small 
variations of the amplitudes of the other harmonics. 
Individual variations in the diameters and lengths of the 
vessels within the physiological range produce large 
quantitative variations of the maximum of the 
impedance in a narrow frequency range which 
correspond to the same resonant harmonics. Some 
discrepancies in the reflection coefficient distribution 
have been revealed. The reflection coefficient 
monotonously decreases with increasing the branching 
order of the tube in the model whereas in the real 
vasculature jΓ  can change sign at the high branching 

orders that facilitates blood motion into the small 
vessels with large hydraulic impedances. The result can 
be used in clinical applications to pulse diagnostics of 
the state of the inner organs. The best explanation of the 
pathological mechanisms is connected with terms 
excess/deficiency of the oriental medicine.  

Parameters of the pulse waves estimated by non-
invasively measured pressure and flow curves in the 
feeding artery of the intraorgan vasculature basing on 
the developed theory can be used for estimation of the 
blood flow in the organ and determination of the 
circulatory disorders at the microcirculatory level.  
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