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Abstract: Computer analysis of the routine EEG may
assist in the visual interpretation to reduce inter- and
intra-observer variability. In addition, it may improve
the diagnostic yield of the EEG, if clinically relevant
features can be extracted that cannot otherwise be
perceived or quantified by human, visual, interpreta-
tion. Furthermore, it may save time in a (busy) clinical
environment. Finally, computer analysis of the EEG
is essential in long-term monitoring of brain func-
tion with continuous EEG (cEEG). We present results
of the analysis of 819 routine EEG recordings from
our own laboratory. Various features (p=87) were ex-
tracted from each EEG, that were subsequently eval-
uated in their differentiating capacity using several
classifiers. Features included statistical descriptors,
several spectral and synchronization measures and
symmetry measures. Different classifiers were trained
and evaluated using independent data sets, repeated
a number of times (cross-validation). The final goal
of the classification procedure was to differentiate be-
tween normal and abnormal EEG background pat-
terns, using the visual interpretation of experts as the
reference. Our results show sensitivities between 80-
89% and specificities of 50-65%. Finally, we esti-
mated ROC curves. This allows the setting of a par-
ticular sensitivity and specificity, that can be defined
depending on the clinical context.

Introduction

EEG interpretation in clinical neuro(physio)logy is
typically performed by visual analysis [1]. For sev-
eral decades, various attempts have been performed
to support the physiologist with computer assisted and
(semi)automatic EEG interpretation. The motivation in-
cludes known inconsistencies in the visual interpreta-
tion due to inter- and intra-observer variation [1, 2], the
rather long learning curve and efficiency. In addition,
for clinical monitoring with continuous EEG, computer
analysis with extraction of the relevant features is essen-
tial [3, 4, 5, 6, 7, 8]. Also, computer analysis may im-
prove the diagnostic yield of the EEG, if clinically rele-
vant features can be extracted that cannot be perceived or
quantified by human, visual, interpretation.

However, at present, automatic EEG interpretation is
still in its infancy, and the application in a clinical envi-

ronment for the classification of routine EEG recordings
is rather limited [9].

In this paper, we describe the results of the analysis
of 819 EEGs, that was aimed to differentiate recordings
with a normal background pattern from recordings with
an abnormal background pattern. The EEG background
pattern refers to the pattern that determines the average
statistical features of the recording, and does not include
transients, such as ’rhythmic discharges’ and epileptiform
abnormalities. This background pattern does, however,
contain relevant clinical information about the state of
the patient (awake, asleep, drowsy) and can be abnor-
mal in many neurological conditions. Examples include
patients who suffered from an intracerebral infarction or
hemorrhage, particular forms of dementia and metabolic
encephalopathies [10].

Materials and Methods

EEGs were recorded with a Brainlab digital EEG sys-
tem (OSG, Belgium) using a 500 Hz sampling frequency
(16 bit). Filter settings were 0.16-70 Hz. The EEGs were
recorded with Ag/AgCl electrodes placed at the Fp2, Fp1,
F8, F7, F4, F3, A2, A1, T4, T3, C4, C3, T6, T5, P4, P3,
O2, O1, Fz, Cz and Pz loci of the international 10-20 sys-
tem. Impedance was kept below 5 KΩ.

We used 819 EEGs, that were recorded in the period
2002-2003, at the department of clinical neurophysiol-
ogy in HagaZiekenhuis, The Hague, Netherlands. Two
sets of EEG were created. Set 1 contained raw, non
pre-processed EEG data (n=577), with typical durations
between 20 and 40 minutes. Set 2 contained 242 arte-
fact free EEG epochs, including labeled epochs with
eyes closed and eyes open. This set was obtained from
different patients than set 1. However, both sets were
recorded in the same department, and contained a com-
parable number and type of normal and abnormal EEGs.
The total length of these artefact free epochs ranged from
1 to 3 minutes. The background pattern of all EEGs were
labeled by experts. These labels were extracted from the
digital database of the clinical neurophysiology depart-
ment. The sets used are summarized in table 1.

Features

A total of 87 features were extracted from all EEG
recordings, and included statistical features (mean, vari-
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 Table 1: Percentages normal and abnormal EEGs of the
two sets used. Normal and abnormal relate to the back-
ground pattern.

Set # EEGs normal abnormal

Set 1 577 73.5% 26.5%

Set 2 242 68.8% 31.2 %

ance, kurtosis, skewness), spectral features, synchroniza-
tion measures and features related to particular forms of
symmetry. Due to space limitations, we only present a
short overview in Table 2.

Table 2: Overview of some features used.

Feature Examples refs

Descriptive statis-
tics

variance, kurtosis,
skewness

[11]

Synchronization phase sync. (Hilbert) [12, 4]

Spectral dominant alpha, re-
activity

[10, 13]

Symmetry BSI and variants [4, 5]

Transients sharp waves, peaks [10, 13]

The particular choice of the features was partially mo-
tivated by insight into the strategies used in the visual
analysis, e.g. the peak frequency of theα-rhythm over
the occipital areas. In addition, measures for symmetry,
such as the brain symmetry index [4, 5], bear a direct
relationship with the strategy used in the visual interpre-
tation. However, we also explored features that are more
difficult if not often impossible, to appreciate by visual
analysis, such as skewness, kurtosis, or (some forms of)
synchronization.

Feature Selection and Classifiers

The goal of the classification procedure was to differ-
entiate between normal and abnormal EEG background
patterns, i.e. a two-class classification problem.

We apply the following methods to train vari-
ous classifiers on the given datasets. Using prtools
(www.prtools.org), the following classifiers were used:
Lasso, Liknon, C4.5, K-NN , Nearest Saled Mean Clas-
sifier (NSMC), Quadratic Classifier (Quadrc), and a Neu-
ral Network Classifier (Neurc). Given the relatively large
number of features extracted, reduction in the dimension-
ality of the problem may be necessary [14]. Traditionally
this is done in an explicit feature selection preprocessing
step. More advanced classifiers have an internal regular-
ization mechanism for this purpose (Lasso and Liknon).
Then, an additional regularization parameter allows for

weighting data fit and model sparseness. In our exper-
iments, this regularization parameter is optimized in an
additional internal double 5-fold cross-validation loop.
The parameter value for which the average of the sen-
sitivity and specificity is minimal is considered optimal.
For the classifiers that do not have an integrated dimen-
sion reduction mechanism (K-NN, NSMC, Quadrc and
Neurc), we use Sequential Forward Selection (SFS) with
the nearest neighbor criterion. Further, the confidence pa-
rameter for C4.5 and the number of neighbors for K-NN
are tuned as the regularization parameters with a double
5-fold cross-validation loop.

Performance Estimation

For the classification of the EEGs using the proposed
feature set, we apply several classifiers, as discussed pre-
viously. As a measure for the performance we estimate
the sensitivity and specificity with a four times repeated
10-fold cross-validation protocol. The sensitivity is com-
puted as the average number of correctly classified nor-
mal background patterns and the specificity as the aver-
age number of correctly classified abnormal background
patterns, i.e.

sensitivity= P(T + |D+) (1)

and
specificity= P(T−|D−), (2)

with D+ the presence of a normal background pat-
tern,D− the absence of a normal background pattern,T+
a normal background pattern defined by computer analy-
sis andT− the absence of a normal background pattern
obtained from computer analysis, respectively.

Results

An overview of the performance of the different clas-
sifiers, using the sensitivity and the specificity as relevant
measures, is presented in Tables 3 and 4 for the two dif-
ferent EEG sets, set1 and set2, respectively.

Table 3: Overview of 7 classifiers used to differentiate
normal from abnormal EEG background patterns, data set
1 (n=577 EEGs).

Classifier Sens % Spec %

Lasso 91.8±3.7 53.9±13.9
Liknon 93.4±3.6 51±12.6
C4.5 85.3±5.0 52.1±11.2
K-NN 85.2±5.7 52.4±13.0
NMSC 82.9±5.1 65.9±12.0
Quadrc 96.6±3.7 34.8±12.5
Neurc 87.9±5.1 52.4±12.5
Average 89±4.7 51.8±4.5
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 Table 4: Results of the analysis of pre-processed, artefact
free EEGs (Set 2, n=242).

Classifier Sens % Spec %

Lasso 91.8±7.0 60.5±13.9
Liknon 90.3±8.1 68.3±17.4
C4.5 87.4±7.3 65.8±16.7
K-NN 82.8±8.3 60.5±17.4
NMSC 85.7±8.4 71.2±17.6
Quadrc 81.6±10.2 65.0±19.4
Neurc 86.0±7.2 61.7±16.8
Average 86.4±4.9 64.7±5.2

The average sensitivity in set 1 and set 2 is about
87%. The specificity in set 1 is approximately 52%. Pre-
processing of the data (set 2) improves the specificity by
about 13%. The number of features selected ranged from
33±8.7 (C4.5) to 65.9±7.9 (SFS) in set 1, with an aver-
age of∼50, while in set 2 (artefact free), the number of
features selected was 9.8±3.9 in the SFS to 18.8±9.3 in
the Liknon, with an average of∼ 14.

Using set 2, we also constructed ROC curves, for dif-
ferent numbers of features used. An example is presented
in Figure 1. In this case, the learn set consisted of 95% of
the 242 EEGs, the test set of the remainder. This proce-
dure was repeated 20 times, using a quadratic classifier.

Figure 1: ROC curve of set 2, showing the sensitivity as
a function of (1-specificity) for 8 selected features and a
quadratic classifier. The most relevant features related to
the occipital peak frequency, and to the anterior-posterior
and left-right spectral symmetry (BSI).

Discussion and Conclusion

The current study evaluates the performance of dif-
ferent classifiers and features in their ability to differenti-
ate between normal and abnormal EEG background pat-
terns. Although the concept of ’background pattern’ is
ill-defined (see e.g. [10]), in the current context it is re-
garded as the EEG pattern that determines the average

statistical features of the recording, and therefore does
not include transients, such as peaks and sharp waves.

More than 800 EEG recordings were used, all labeled
by experts. The labels were obtained from the digital
EEG data base. A part of the EEG set contained arti-
fact free data, obtained after visual pre-processing of the
data (set 2).

Our analysis shows that the average sensitivity ob-
tained in set 1 and set 2 is about 87%. The specificity
in set 1 is approximately 52%, and improves in set 2,
after artefact rejection, to∼ 65%. The number of fea-
tures selected was significantly lower in the artefact free
EEG group (set 2), with a value of∼14 than in the ’raw’
EEG data set (∼50). Therefore, artefact rejection seems
to both improve the performance of the classifier, and
reduces the number of selected features. We could not
find a particular classifier that significantly outperformed
any other classifier, using the sensitivity and specificity
as performance measures.

In addition, we constructed ROC curves for set 2, us-
ing different numbers of features. An example is shown
in Figure 1, where 8 features were selected. Construction
of ROC curves allows the setting of a particular sensitiv-
ity and specificity, that can be defined depending on the
clinical context.

The most relevant features found were related to the
dominant frequency over the posterior areas and mea-
sures for symmetry. Insight into the most relevant fea-
tures may e.g. assist in further optimizing the sensitivity
and specificity of these features, and provide additional
insight into the strategies used by human visual interpre-
tation.

The current performance is not sufficient for clinical
application, that would need a sensitivity of> 98% and
specificity of> 98%. This implies that about< 2% of
EEGs with a normal background are labeled as abnor-
mal and< 2% of EEGs with an abnormal background
are labeld as normal. These estimates are based on per-
sonal experience and reported inter-observer variability,
see e.g. [1, 2].

Note, however, that a typical clinical EEG descrip-
tion does allow to include a measure for uncertainty in
the conclusion of the EEG report, for instance phrases as
”a nearly normal background pattern” or ”slightly abnor-
mal”, are often used. This labeling was not possible by
our approach. Future applications should include a mea-
sure for the (un-)certainty of the labels assigned.

Several aspects may contribute to the performance
obtained. Firstly, weassumedthat the labeling, as per-
formed by the experts, was correct, and consistent. It is
known, however, that human EEG interpretation may suf-
fer from inconsistencies [1, 2]. Clearly, wrong labeling
will yield suboptimal performance in the final classifica-
tion. Secondly, we cannot exclude that non-explicit or
even clinical knowledge is used in final description of the
EEG (e.g. knowledge about the clinical condition of the
patient). Also, artifacts may have been only (partially)
removed in set 2; the sensitivity of the various features to



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 artifacts has not been studied, thus far. Improvements can
further be realized by various strategies, including artifact
rejection, for instance by using ICA [15, 16], and perhaps
additional or other features. Also, other classifiers can
be considered. Preliminary results with the LESS clas-
sifier [17], show that LESS outperforms the Liknon and
Lasso classifiers in the average sensitivity and specificity.
Moreover, it uses substantially fewer features than both
Liknon and Lasso. Furthermore, a larger data set may be
needed, as well. The use of large databases for research
and education has been increasingly recognized [18]. In
the near future, we aim to realize data exchange between
various hospitals in the Netherlands for educational and
research purposes, such as the work described in this pa-
per.

In conclusion, computer analysis of the EEG may as-
sist in the interpretation, reveal so far unknown features
of the EEG, and reduce inter-observer and intra-observer
variability. However, several additional improvements
are necessary to increase the sensitivity and specificity
to values sufficient for clinical application.
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