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Abstract: Epileptic seizures are manifestations of 
epilepsy, a serious neurological disorder second only 
to stroke.  Prediction of seizures from real-time 
analysis of the EEG is now almost a reality. As the 
ability to predict leads to the possibility of control, 
research in control of seizures is expected to flourish 
in the near future, much to the benefit of the epileptic 
patient. Investigations in stimulation and control of 
the brain have attracted the attention of the academic 
community, and medical device companies have 
started off designing and implementing intervention 
devices for various neurodegenerative diseases. These 
devices will be the brain counterparts to cardiac 
pacemakers and defibrillators. Electromagnetic 
stimulation and /or administration of anti-epileptic 
drugs upon the issue of a warning for an impending 
seizure may significantly reduce the number and 
severity of epileptic seizures. The devised control 
schemes should be power efficient, with maximum 
efficacy and minimum side effects. The expectation is 
that a combination of real-time seizure prediction 
technology with feedback control techniques would 
result to a novel and effective treatment for epilepsy. 
Furthermore, if successful, the thus derived control 
schemes and theories may be applied to Parkinsonian 
tremors, sleep disorders, migraines and other brain 
dynamical disorders with intermittent symptoms. 
 
Introduction 
 
      Epilepsy is considered the window to the brain’s 
function, and an increasingly active, interdisciplinary 
field of research [1]. The “sacred” or “divine” disease is 
among the most common disorders of the nervous 
system, second only to stroke, and affects approximately 
1% of the world’s population [2]. While epilepsy occurs 
in all age groups, the highest incidences occur in infants 
and the elderly [3]. The high incidence of epilepsy stems 
from the fact that it occurs as a result of a large number 
of causes, including genetic abnormalities, develop-
mental anomalies, febrile convulsions, as well as brain 
insults such as craniofacial trauma, central nervous 
system infections, hypoxia, ischemia, and tumors.  
      The hallmark of epilepsy is recurrent seizures. The 
seizures are due to sudden development of synchronous 
neuronal firing in the cerebral cortex and are recorded by 
electrodes on or inside the brain. Electroencephalo-

graphic (EEG) recordings from the epileptic brain [4] 
show that the epileptoform discharges may begin locally 
in portions of the cerebral hemispheres (partial / focal 
seizures, with a single or multiple foci) or begin 
simultaneously in both cerebral hemispheres 
(generalized seizures). After a seizure’s onset, partial 
seizures may remain localized and cause relatively mild 
cognitive, psychic, sensory, motor, or autonomic 
symptoms, or may then spread to cause altered 
consciousness, complex automatic behaviors, or 
bilateral tonic-clonic (convulsive) movements. 
Generalized seizures cause altered consciousness at the 
onset and are associated with a variety of motor 
symptoms, ranging from brief localized body jerks to 
generalized tonic-clonic activity. Seizures come and go, 
in a seemingly unpredictable way. In some patients, 
seizures can occur hundreds of times per day; in rare 
instances, they occur only once every few years.   
      If seizures cannot be controlled, the patient 
experiences major limitations in family, social, 
educational, and vocational activities. These limitations 
have profound effects on the patient’s as well as on his 
or her family’s quality of life [5]. In addition, frequent 
and long, uncontrollable seizures may produce 
irreversible damage to the brain, status epilepticus 
offering supporting evidence for such a hypothesis [6]. 
However, it still is not clear if seizures are the cause or 
the result of such a damage that worsens over time if 
left untreated [7].  It is a widely held view that seizures 
from mesial temporal structures may arise because of 
damage to hippocampal circuitry (e.g. hippocampal 
sclerosis). Loss in neurotransmitter receptors in the 
hippocampus also has been reported [8]. Physiological 
studies in epileptogenic hippocampi have demonstrated 
loss of neuronal inhibition. It is generally believed that 
impairment of the balance of inhibition and excitation at 
the neuronal network level is one critical factor for 
epileptogenesis [9-11]. 
      The mainstay of treatment of epilepsy today is 
pharmacological. Anticonvulsant drugs are taken daily, 
in fixed doses, titrated to achieve a steady-state 
concentration in the blood. The specific concentration is 
chosen to provide the most effective seizure control 
with the least degree of side effects. Nonetheless, 
approximately 33% of patients with epilepsy have 
seizures that are refractory to medical therapy.  For 
these patients, surgical treatment may be an option. 
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 Surgical treatment can be effective in carefully selected 
cases, which usually represent 8% of the total epileptic 
patients [12]. Good responses (Engel Class I) to surgery 
occur in approximately 70 to 90% of patients with 
complex partial seizures due to mesial temporal sclerosis. 
However, the response rate drops off markedly in 
patients with epileptogenic lesions of the neocortex (most 
commonly in frontal or temporal lobes). Patients with 
more than one epileptogenic focus, or those with 
generalized seizures, usually do not experience complete 
seizure control with current surgical therapy. Side effects 
from both surgical and pharmacological treatments have 
been reported. One problem with chronic daily dosing 
with anticonvulsant drugs is that many patients develop a 
tolerance to the anticonvulsant effect. Surgery, on the 
other hand may inflict damage to other brain functions, 
depending on the proximity of the focus to related brain 
centers.   
      For many years, there have been attempts to control 
epileptic seizures through another modality, the electrical 
stimulation of the brain [13]. Attempts to control 
medically intractable seizures with cerebral stimulation 
were undertaken in the 1960’s, but were largely 
abandoned after 1970’s, due to relatively lack of efficacy. 
Recently, chronic vagus nerve stimulation (VNS) was 
approved for clinical treatment of intractable seizures 
[14-15]. Clinical outcomes with both direct brain 
stimulation and vagus nerve stimulation suggest that 
these methods carry a much lower incidence of the 
adverse cognitive, neurological, and systemic effects that 
occur with anticonvulsant drugs [16] and lend credence 
to the idea that stimulation could become a highly 
effective and well-tolerated way of treating seizures. 
However, the overall efficacy of existing techniques has 
been modest. For example, in the pivotal studies of the 
vagus nerve stimulator, perhaps 35-40% of patients 
experienced a 50% decrease in seizure frequency, and a 
much smaller number became seizure free [17].  
      Furthermore, the mechanism for the anticonvulsant 
effect of electrical stimulation is still unknown, although 
many theories have started to develop. Chkhenkeli et al. 
reported inhibitory effects of electrical stimulation at the 
head of the caudate nuclelus, cerebellar dentate nucleus, 
thalamic centromedian nucleus and neocortical and 
temporal lobe mesiobasal epileptic foci in 150 patients 
[17]. Suppression of subclinical epileptic discharges and 
a reduced frequency of generalized, complex partial, and 
secondary generalized seizures was noted with 
stimulation of 4-8 Hz in the head of the caudate nucleus 
and with 50-100 Hz in the cerebellar dentate nucleus.  
Centromedian nucleus (CM) stimulation at 20-130 Hz 
desynchronized the EEG and suppressed partial motor 
seizures.  Direct stimulation of the epileptic focus at 1-3 
Hz may suppress rhythmic after discharges (ADs). 
Yamamoto reported similar inhibitory effects on ADs as 
a result of low frequency stimulation of the epileptic 
focus [18]. Similar suppressive results by Kerrigan et al. 
were observed with 100 Hz stimulation of the anterior 
thalamic nucleus [19]. Patients clinically and statistically 
improved with respect to severity of their seizures.   
      Clinical trials of deep brain stimulation (DBS) for 
epilepsy management have recently been started in the 

United States, one being conducted by Medtronics and 
the other by NeuroPace [19-20, 21]. In both cases, 
surgical implantation of stimulating electrodes is 
required. Like the VNS device, the DBS device is 
programmed to deliver intermittent stimulations 
independent of the presence or absence of seizure 
activity, thus possibly interfering with the normal 
function of the brain. The current DBS devices may 
conceivably detect a seizure after its onset, and then 
attempt to abort it by delivering an electrical 
stimulation, thus serving as a brain defibrillator [22]. A 
major conceptual improvement over both of these 
approaches would be if stimulation is activated early 
enough to even prevent the seizure from occurring, thus 
to serve more like a brain pacemaker. This would 
require the ability to detect EEG changes predictive of 
an impending seizure before the seizure develops. Even 
better would be a paradigm that utilizes continuous 
feedback control algorithms to maintain the brain 
electrical activity in a non-seizure state.   
      From the engineering point of view, in the last few 
years, we have started viewing and investigating 
epilepsy as a dynamical disorder of the brain. 
Preliminary results, along this line of research, indicate 
that at least seizures of some type are predictable long 
prior to their occurrence. Importantly, these results are 
coming from analysis of patients with seizures not 
necessarily preceded by auras. 
      As the ability to predict leads to the possibility of 
control, research in controlling of seizures is expected to 
flourish in the near future, much to the benefit of the 
epileptic patient. Investigations in stimulation and 
control of the brain have attracted the attention of the 
academic community, and medical device companies 
have started off designing and implementing 
intervention devices for various neurodegenerative 
diseases (e.g. stimulators for Parkinsonian patients) as 
counterparts to the existing ones for cardiovascular 
applications (e.g. cardiac pacemakers, defibrillators). 
      In this paper, a brief historical perspective is 
presented, with main references from the field of seizure 
prediction and seizure control. Current trends and 
potential problems are highlighted. It is generally 
expected that application of seizure prediction 
technology and adaptive control to the epileptic brain 
will lead to the first brain pacemakers for epilepsy (and 
other brain dynamical disorders) in the near future.  

Historical Perspective 

      Until recently, the general belief in the medical 
community was that epileptic seizures could not be 
anticipated. Seizures were assumed to be abrupt 
transitions that occurred randomly over time [23]. 
However, theories based on reports from clinical 
practice and scientific intuition, like the “reservoir 
theory” postulated by Lennox [24], existed and pointed 
out to the direction of seizure predictability. Various 
feelings of auras, that is, patients’ reports of sensations 
of an upcoming seizure, exist in the medical literature. 
Penfield [25] was the first to note changes in the 
cerebral blood flow prior to seizures. Deterministically 
predictable occurrences of seizures (reflex seizures) in a 
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 small minority (about 3 to 5%) of epileptic patients are 
reported as a result of various sensory stimuli [26]. These 
theories and observations provided initial evidence that 
seizures might be predictable.  
      While seizures are the major hallmark of epilepsy, 
interictal (between seizures) spikes in the EEG that result 
from intermittent synchronization of a large number of 
cortical neurons are the other electrographic hallmark of 
epilepsy. Epileptic spikes are indicative of a pathological 
hypersynchrony in the brain that could be provoked by 
paroxysmal depolarization shifts (PDS) of the resting 
potentials of epileptic neurons and be facilitated by 
increased excitation and/or decreased inhibition in the 
neural networks involved [27]. At this microscopic level, 
a theory of neuronal recruitment, as a necessary condition 
for an epileptic spike to occur, was developed. Short 
times in the order of tens of msec were postulated, in 
agreement with the observed duration of epileptic spikes. 
Intensive research efforts via computer analysis of 
epileptic spikes in the EEG were undertaken, as it was 
assumed that localization of spikes could answer the 
question of the location of the epileptogenic focus in 
patients with focal epilepsy [28]. To test the hypothesis 
of neuronal recruitment at the macroscopic level for a 
seizure to occur new research was launched. It was 
hypothesized that spikes should occur more frequently 
during the preictal (before a seizure) than the interictal 
(between seizures) or postictal (after a seizure) periods. 
This theory was not substantiated as rate of spike 
occurrences was found not to change significantly before 
and after seizures [29].  
      In 1983 the first paper reporting consistent changes of 
spike activity prior to seizures appeared [30]. Lange et al. 
at UCLA showed that it was the spatial patterns of spikes 
across brain sites, and not the rate of spikes per brain site, 
that were progressively changing prior to seizures. These 
results were qualitatively in agreement with previously 
reported results from animal experiments [31].  
      The 80s saw the emergence of new signal processing 
methodologies based on the mathematical theory of 
nonlinear dynamics, in particular the spontaneous 
formation of organized spatial, temporal or spatio-
temporal patterns in various physical, chemical and 
biological systems [32-34]. These techniques quantify 
the signal structure from the perspective of dynamical 
invariants (complexity of the attractor quantified by its 
correlation dimension, or divergence of trajectories by 
the largest Lyapunov exponent), and were a drastic 
departure from the signal processing techniques based on 
the linear model (Fourier analysis). Nonlinear dynamical 
algorithms were also applied to biological systems, 
notably the heart and brain (EEG) [35, 36]. In 1988, 
Iasemidis and Sackellares reported the first application of 
nonlinear dynamics to clinical epilepsy [37]. This group 
started to analyze continuous, multichannel, preictal, ictal 
and postictal EEG from epileptic patients with temporal 
lobe epilepsy, devising new and modifying existing 
measures from the theory of chaos to quantify the rate of 
divergence of trajectories (Lyapunov exponent) for the 
analysis of EEG in epilepsy. The central concept was that 
seizures represented transitions of the epileptic brain 
from its “normal”, less ordered (chaotic) state to an 

abnormal, more ordered state and back to a “normal” 
state along the lines of chaos-to-order-to-chaos 
spatiotemporal transitions. The Lyapunov exponents 
were chosen because they can measure chaos and 
stability of general states of linear or nonlinear systems. 
      This dynamical modeling hypothesis changed some 
long-held beliefs about seizures. Iasemidis and 
Sackellares reported the first evidence that the transition 
to epileptic seizures may be consistent with a 
deterministic process [38], [39] and that the EEG during 
epileptic seizures can be better modeled as an output of 
a nonlinear than a linear system [40]. The existence of 
long-term preictal periods (order of minutes) was shown 
using nonlinear dynamical analysis of EEG from 
subdural arrays, and raised the feasibility of seizure 
prediction algorithms by monitoring the temporal 
evolution of the short-term Lyapunov exponents 
(STLmax) at critical brain sites [41].  The possibility of 
focus localization and seizure detection was also 
reported with the same technique in 1990 and 1994 
respectively [42], [43]. Elger and Lehnertz modeled the 
spatio-temporal dynamics of the epileptic focus in 1994 
[44], while Scott and Schiff directed attention to the 
time structure of inter-ictal spikes [45]. Lopes da Silva 
et al, who had been developing neurophysiology driven 
dynamical models for EEG activity since the late 70s, 
also quantified state bifurcations in epileptogenesis [46]. 
Hively et al applied “chaos methods” to the prediction 
of epileptic seizures [47], while Lerner used the 
correlation integral to track changes in the EEG [48]. 
Pezard et al utilized several nonlinear measures, 
including entropy, to track EEG changes [49]. Other 
groups [49-58] followed towards the detection of the 
preictal period. The important conclusion from all the 
different techniques tried so far is an accumulation of 
evidence that there are measurable differences in the 
EEG prior to seizure onset that can be exploited for 
epileptic seizure prediction. In parallel, statistical 
evaluations of the proposed seizure predictability 
schemes, with respect to their sensitivity and specificity, 
have been developed [59-65].  
      In the meantime, Iasemidis and Sackellares groups 
further improved the STLmax technique with the use of 
optimization techniques and the critical mass hypothesis 
for selection of the most relevant (critical) electrode 
sites prior to seizures. They applied the algorithm to 
continuous, long (days) EEG data from depth, subdural 
or scalp recordings in patients with temporal lobe and 
frontal lobe epilepsy. The first prospective seizure 
prediction algorithm that ran on continuous EEG data, 
in real-time and on-line was published in 2003. The 
reported sensitivity and specificity values of that 
algorithm were high in both patients and animal models, 
with average prediction times in the order of 70 minutes 
prior to seizures  [66-69]. A series of other recent papers 
by these groups offer hints for further improvement of 
this first seizure prediction algorithm [70-84].   
      The emerging view from the above investigations is 
that seizures are manifestations of recruitment of brain 
sites in an abnormal hypersynchronization. The onset of 
such recruitment occurs long before a seizure and 
progressively culminates into a seizure. Therefore, 
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 seizures appear to involve a progressive coupling of the 
focus with the normal brain sites during a preictal period 
that may last days to tens of minutes. Thus, auras could 
be defined as the late stage of this emerging activity. 
Reflex seizures may be viewed as results of input stimuli 
capable of inducing a fast preictal dynamical recruitment.  
      Recent and old research with brain electrical 
stimulation [85-95] point out to a series of problems that 
need to be addressed for successful control of seizures, 
namely the number of stimulating electrodes, number of 
recording electrodes, brain areas to be stimulated, 
characteristics of stimulation, side effects expressed as 
damage to the brain tissue or function, issues of economy 
(e.g. battery life of the stimulator(s)) etc. It appears that a 
combination of seizure control technology and seizure 
prediction technology may solve some of these problems.  

Conclusion 

      The ability to predict and control epileptic seizures 
well prior to their occurrences may lead to novel 
diagnostic tools and treatments of epilepsy. Evaluation of 
old and new anti-epileptic drugs and protocols, with 
respect to duration of patients’ seizure susceptibility 
and/or preictal periods detected by seizure prediction 
algorithms, may lead to the design of new, more effective 
antiepileptic drugs. Electromagnetic stimulation and /or 
administration of anti-epileptic drugs at the beginning of 
the preictal period to disrupt the observed entrainment of 
normal brain with the epileptogenic focus may result to 
the development of the first brain pacemakers for 
epilepsy in the very near future. 
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