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Abstract: In this paper, an autoregressive (AR) 
model and, respectively, an adaptive nonlinear 
Markov process amplitude algorithm were used to 
model and simulate the physiologic tremor signal 
obtained during a visual repetitive stimulation. In 
order to select the best between the two proposed 
models – linear, and, respectively, nonlinear 
stochastic process – the visual reflex detected in the 
tremor signal was used. Thus, knowing that a 
significant response is obtained in the tremor signal 
at double the stimuli frequency, the tremor recorded 
for three different stimuli frequencies (5 Hz, 10 Hz 
and 15 Hz) were classified with a multilayer 
perceptron (MLP) and a support vector machine 
(SVM) artificial neural network. The selection of the 
most appropriate model was done based on the 
correct classification rate of the classifiers. Hence, 
the best rate gave the model that better fitted the 
original tremor data. 
 
Introduction 
 

So far, physiological tremor (PT) was subject to 
numerous studies aimed to find its real mechanisms and 
origins. But, even now, we still know very little about it. 
Physiological tremor – defined as the involuntary, 
oscillatory movement of parts of the body, mainly the 
upper limbs –, is a complex signal resulting from 
interactions between several mechanical and neural 
factors. Up till now some models were proposed for the 
complex system generating the tremor. The tremor 
signal’s modeling is of great importance since a well 
fitting model might yield insight into the underlying 
process. Thus, a better understanding of the physical 
mechanisms generating the tremor signals and a 
superior comprehension of the causes of the tremor 
signals changes could be achieved. 

The linear stochastic autoregressive (AR) process 
was one of the first proposed models [1] for the tremor 
data. An improved model was then suggested in [2]. 
This was the linear state space model (LSSM) and, 
unlike the AR model, it takes into account the 
observational noise too. Compared to the AR model, the 
LSSM model proved to be a better one [1] while the 
autoregressive moving average (ARMA) processes, 
which are generalized AR processes including past 
driving noise terms in the dynamics, yielded only to 
comparable results [4]. All the above models are linear 
stochastic processes and their implementation results led 
to the conclusion that the PT should mainly be 

considered a realization of a linear stochastic process 
[3]. In terms of physics and physiology this means that 
the PT could be regarded as the output of a linear 
damped oscillator driven by uncorrelated muscle 
activity. 

Nevertheless, there are also papers pointing out that 
tremor may include significant nonlinear [3],[5], even 
chaotic components [6], which may play a major role in 
diagnosis and rehabilitation. If in [6] the chaotic 
behaviour was demonstrated in the tremor of healthy 
persons, in [3],[5] the nonlinear behaviour is considered 
to be the characteristic of only the pathological forms of 
tremor (i.e. Parkinsonian tremor, essential tremor etc.). 
In other words, pathological tremors represent non-
linear processes. If these processes are stochastic or 
determinist chaotic this is still an opened question. 
Hence, if in [3][5][7] the processes are proved to be 
stochastic in nature, in [8] a chaotic approach is 
proposed in order to differentiate between two types of 
pathologic tremors. 

However, beside all these hypotheses there is 
growing evidence that complex bodily rhythms arise 
from stochastic, nonlinear biological mechanisms 
continuously interacting with a constantly fluctuating 
environment. Thus, many physiological processes are 
neither linear stochastic processes nor nonlinear 
deterministic ones. 

In Figure 1 it can be seen that the two paradigms, 
nonlinear-deterministic and linear-stochastic behaviour, 
are extreme positions in the area spanned by the 
properties “nonlinearity” and “stochasticity”. Some 
models that allow a connection to be made between the 
nonlinear stochastic model approach and particular real 
world phenomenon fill the gap between them. One of 
these models is equally the nonlinear Markov process 
amplitude (NMPA) model. 

In this paper the linear as well as the nonlinear 
stochastic processes are reviewed as possible model 
candidates for the hand physiological tremor. The 
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Figure 1: Systems’ areas covered by analysis methods 
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 analysis capitalizes on the results reported in [9]. Here, 
the observed changes in the frequency characteristics of 
the tremor’s signal – due to visual repetitive stimuli (5 
Hz, 10 Hz and 15 Hz) –, demonstrated a significant 
connection between visual pathways in the central 
nervous system (CNS) and the regions basically 
governing tremor. Knowing that a considerable 
coherence was revealed in the tremor signals at double 
the stimuli frequency, we further took advantage on the 
central driving oscillations confined in the PT signal. 
Thus, the tremor was modeled using first an AR model 
and then, nonlinear Markov process amplitude (NMPA) 
model [10]. Finally, the better fitting model was chosen 
using, as a criterion, the correct classification rate of 
two artificial neural networks that had as inputs the 
estimated parameters of the two models. 
 
Materials and Methods 
 

Two subjects were admitted in this study. The 
subjects were healthy, with no known neurological or 
endocrine pathology. The subjects have been explained 
all procedures and gave written consent regarding the 
participation in the study. The entire procedure of the 
tremor acquisition was unobtrusive for the subjects, 
with no physical contact, due to the sensor capability 
[11]. 

The subject's elbow was fixed by a mechanical 
support in order to preserve the tremor characteristic 
unaffected by the hand fatigue influence in the last part 
of the recordings. In order to isolate them from all kind 
of surroundings stray stimuli, all the recordings took 
place in a quiet room without any source of light. All 
the time the subjects looked to a computer display. The 
stimuli consisted in a circle, of 2 cm radius, placed in 
the middle of the display changing its luminosity 
between a black background followed by a white flash. 
The pattern of the stimuli changes was a symmetric 
rectangular wave with the desired selectable frequency 
(5Hz, 10Hz, 15Hz). The subjects had no visual control 
of their hand position. Each recording last 98.4 s, but 
only the first 32.8 s and the last 32.8 s of the tremor 
signal were kept. After the first time segment of 32.8s a 
visual stimuli at one of the specified frequencies (5Hz, 
10Hz, 15Hz) was presented to the subject. The 
recording sessions were scheduled several days until the 
acquiring of the entire data set was finished (77 
recordings: 30/5Hz, 29/10Hz, 18/15Hz). The sampling 
rate was 250 samples per second and we got 8.200 
samples per each acquired segments of the recording. 

Each time series was pre-filtered using a 4 ÷ 40 Hz 
linear band-pass filter. Further, it was normalized to 
unity variance and zero mean value and it was divided 
into 119 sliding windows of 128 samples each, 
overlapped by 64 samples. 

A first implemented model for the tremor data 
generating system was an autoregressive (AR) process 
of 4th order.  To apply the AR framework to tremor 
signals, we assumed that a linear filter described the 
process of tremor generation and that this filter was fed 

with a white noise signal, w[13]: 
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In eq. (1) the current observation, x[n], is 

represented as a weighted linear combination of past 
observations, x[n-i] (i=1,…,N), plus a random, 
uncorrelated input. In our case N was 4 and the AR 
coefficients, ai (i=1,…,N), were calculated by solving 
the Yule–Walker equations given in eq. (2).  
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Here, σ2

w is the variance of the white noise signal, 
w[n], and Rx, given by: 
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represents the correlation matrix for a random vector 
whose N components are the outputs of the random 
process x (x = [ x[0], x[1], …, x[N – 1] ]). 

Further, a second model was implemented for the 
original tremor data. The tremor modeling using 
adaptive nonlinear Markov process amplitude 
(ANMPA) reported in the present article is an 
implementation of the nonlinear Markov process 
amplitude model (NMPA) proposed in [10] for 
nonlinear coupling interaction of spontaneous EEG. The 
model parameters were determined adaptively with the 
least mean square (LMS) algorithm. A version of this 
algorithm for a first-order Markov process amplitude 
model is presented in [12]. 

In this paper, the NMPA model was assumed to 
appropriately decompose the frequency components of 
the tremor signal into some spontaneous oscillations (a 
priory specified) and the nonlinearly coupled 
frequencies (self-coupling oscillations and, respectively, 
cross-coupling oscillations). More exactly, two 
oscillatory waves (m1 and m2) passing through a 
nonlinear square system generates two kinds of 
harmonic frequencies: self-coupling harmonics (2m1 
and 2m2) and, respectively, cross-coupling harmonics 
(m1 ± m2). Having these we can write the NMPA model 
as in eq. (4). Here, y(n) is the estimated tremor signal 
assumed to be composed of K different oscillations (xj, 
j=1÷K), mj is the dominant jth frequency, φj is the initial 
phase (in this paper, it is equal to zero), εs

j is the self-
coupling coefficient of the jth model oscillation, εc1

ij and 
εc2

ij are the cross-coupling coefficients of the coupled 
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 frequency mi-mj and mi+mj, respectively, n is the time 
index and aj(n) is the model amplitude of the first order 
Markov process. 
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The next estimate of the model amplitude aj(n+1) is 
given by eq. (5): 
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where: ξj(n) is the independent increment of Gaussian 
distribution with zero mean and unity variance, µj is the 
coefficient of the random process and γj is the 
coefficient of the first-order Markov process. 

As tremor signal is highly nonstationary the least 
mean square algorithm was used in order to adaptively 
estimate some of the model parameters (see Figure 2). 
The error squared, e(n)2 = [s(n)-y(n)] (where s(n) is the 
tremor signal to be modeled), was used as an estimate of 
the mean square error cost function J, defined as J = 
1/2⋅E{e(n)2}.  
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 2: Block diagram of the LMS nonlinear AMPA 
 

The model's parameters (aj, γj, µj, εs
j, εc1

ij, εc2
ij, 

i,j=1÷K, i≠j) were adaptively adjusted using for this a 
steepest descent type algorithm. For each iteration and 
for each of the above parameters the following formula 
was applied: 
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Here, τ is a symbol denoting each of the above 
parameters of the model, ητ is a small positive constant 

called the adaptive learning rate and ∇τj J(n) is the 
gradient approximation of J(n) that is defined as: 
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Applying the eq. (6) and (7) one can obtain the 
following adjusting formulas for the NAMPA model 
parameters (see eq. (8), (9), (10), (11) and (12)): 
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In order to select the better between the two 

proposed models – linear, and, respectively, nonlinear 
stochastic process – the tremor recorded for three 
different stimuli frequencies (5 Hz, 10 Hz and 15 Hz) 
were classified with a multilayer perceptron (MLP) and, 
respectively, a support vector machine (SVM) artificial 
neural network. The selection of the most appropriate 
model was done based on the correct classification rate 

 

y[n]=f(aj[n], γj[n], µ j[n], εs
j[n], εc1

ij[n], εc2
ij[n]), 

j=1÷K 
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 of the classifiers. Thus, the best rate gave the model that 
better fitted the original tremor data.  

Multilayer perceptrons (MLPs) [13] are distributed, 
adaptive, generally nonlinear learning machines 
consisting in many different interconnected processing 
elements (PEs). Moreover, they are feedforward, 
supervised, neural networks trained with the standard 
backpropagation algorithm [13]. Frequently used for 
pattern classification problems, network topologies with 
one or two hidden layers can approximate virtually any 
input-output map. 

Learning in neural networks is done by propagating 
the information back through the network and by 
changing the weighting factors (weights) at each 
processing element (PE) to reduce output errors. Thus, 
the weights are adjusted directly from the training data 
without any assumptions about the statistical 
distribution of the data. In order to prevent the network 
to memorize the training-set data a cross-validation set 
is frequently used as a stop criterion in the training 
process. Thus, for a given network size the 
generalization is maximized, fact that allows the 
incomplete or noisy inputs to be completely recovered 
by the network. Very important in the MLPs (that are 
semiparametric classifiers) are the network topology 
and the activation functions assigned to the PEs. These 
two central issues in neural network design have great 
impact in the classification performance of the network. 

Support vector machines are state of the art learning 
machines based on statistical learning theory. This type 
of artificial neural networks map the input training data 
set onto a high dimensional state using for this some 
function φ. If this feature space is sufficiently large, then 
the patterns become linearly separable and a simple 
perceptron network can do the classification in this new 
space. A key point of the theory consists in the dot 
product <φ(x), φ(xi)> in the feature space that is replaced 
with a nonlinear function k(x, xi) called kernel. The 
kernel Adatron algorithm [14] represents the "on-line" 
version of the quadratic optimization approach used for 
SVMs. By determining, in the feature space, a 
separating hyperplane that maximizes the margin or 
distance between the hyperplane and the closest data 
point (support vector) belonging to different classes, the 
SVMs minimize an upper bound to the Bayes error. 
This means that a better generalization is obtained for 
SVMs, making them very useful in pattern recognition. 
 
Results 
 

In this paper the frequency components of the 
tremor signals were decomposed into five spontaneous 
oscillations (5 Hz, 10 Hz, 15 Hz, 20 Hz, 30 Hz) and 
their corresponding self- and cross-coupling 
oscillations. The five oscillations were selected in order 
to detect and model – for each particular stimuli 
frequency (5 Hz, 10 Hz and, respectively, 15 Hz) – the 
effect of the visual stimulation upon the tremor signal 
characteristics. 

The AR model of 4th order was implemented in 
Matlab, using the Yule-Walker equations given by eq. 
(2).  

 
 

Figure 3: Original (red) and modeled (blue)  
tremor data (some examples) 

 
The 4 AR coefficients of the signal sliding windows 

formed the input feature vectors corresponding to the 
autoregressive model. The adaptive nonlinear Markov 
process amplitude model was implemented in 
LabWindows CVI 5.5. The adaptive learning rates (ηγ, 
ηµ, ηε_s, ηε_c1, ηε_c2) were set to fixed values throughout 
training. The learning was stopped after 500 epochs of 
training. The feature vectors were chosen among 
different combinations, beginning with 5 components 
given by the proposed five spontaneous oscillations and 
ending with feature vectors of 50 components 
(spontaneous oscillations, self-coupling oscillations and 
some cross-coupling oscillations). In Figure 3 some 
examples with one of the best, one of the worst and one 
of the moderate modeling results obtained with 
ANMPA model are illustrated. 
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 The MLP network was the first implementation for 
the classifier. The network had two hidden layers with 
tanh activation functions for the hidden PEs. The output 
layer was compounded of three neurons corresponding 
to the three different classes (tremor signals acquired 
under 5 Hz, 10 Hz and 15 Hz visual stimuli). The 
SoftMax activation functions used for these last PEs are 
similar to the tanh functions, except that the outputs are 
scaled by the total activation at the output layer. Thus, 
the sum of the outputs is 1 and the output of the MLP is 
providing the a posteriori probability of the class given 
the data. 

The second implementation of the classifier was 
done using a SVM. The kernel function was a Gaussian 
function, fact that avoided the explicit computation of 
the pattern projections into the high-dimensional space 
(the inner product of Gaussians is still a Gaussian). 

The feature vectors were divided into two datasets: 
the training set (90% of the total data) and the cross-
validation set (10%), the last being used as a training 
stop criteria. 

The classifier's correct classification rates using an 
AR model and a MLP network were 84.6% for 5 Hz 
class, 67.2% for 10 Hz class and 21.4% for 15 Hz class. 
In the case of adaptive nonlinear Markov process 
amplitude model and the same MLP network topology 
the classifier's performances constantly underperformed 
the AR model. When a SVM network was used the 
performances obtained for both models of tremor data 
slightly increased but, once again, the AR model 
outperformed the ANMPA model. 

 
Discussion 
 

In our opinion the weak results, obtained using the 
ANMPA model, are mainly due not to some model's 
weaknesses but rather to an inappropriate usage of it. In 
fact, the ANMPA model is seeking to describe the 
behavior of very complicated time series by using the 
ensembles of some simpler functions (sinusoidal 
functions with different frequencies and amplitudes). In 
this idea, the main characteristics of the model are 
assumed to be related to some few a priori specified 
spontaneous spectral oscillations. In our case the tremor 
data were modeled using five spontaneous oscillations 
(5 Hz, 10 Hz, 15 Hz, 20 Hz, 30 Hz) and their 
corresponding self- and cross-coupling oscillations. 

A first problem with this proposed model is the lack 
of any rigorous algorithm to determine the optimum 
number of signal's dominant frequencies. In this study, 
the ANMPA tremor model was developed under the 
hypothesis of the nonlinearly coupled frequency 
components in the tremor signals. 

Second, regarding the self- and cross-coupling 
oscillations frequency corresponding to the main 
spontaneous oscillations someone can observe a lot of 
redundant spectral information that unable the model to 
correctly identify the tremor signal characteristics.  

 
 

Conclusions 
 

Based on the results presented above we could 
conclude that the stochastic tremor components 
dominate the tremor time series and, as a consequence, 
the tremor series span a space region more closed to 
ARMA zone (figure 1) characterized by light linearity 
and stochastic character then that of nonlinearly 
stochastic processes. Inspite of these, the ANMPA 
model should not be considered a completely 
unappropriate model for the tremor data. The 
frequencies selected to model the data could be the 
cause for the bad results obtained with this model. 

Also, the main problems of the ANMPA model are 
similar with those resulting from every model's 
estimation using elementary functions: 

• the choice of the basis functions, 
• the selection of the elementary function’s 

parameters, and 
• the determination of the model's coefficients. 
If for the model coefficients' determination there are 

some very well defined and studied methods the choice 
of the number of basis functions and the choice of 
parameters for the elementary functions are very 
challenging problems. 

To solve these problems in the future research we 
will use a genetic algorithm in order to determine the 
optimum spontaneous oscillations frequencies. 
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