
The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 A LOW BANDWIDTH SOLUTION FOR TELEMEDICINE APPLICATION
EVENT SYNCHRONISATION USING JMF

N. Seixas*, H. Pereira*, P. Carvalho*, J. Henriques*, M. Antunes**

*Centre for Informatics and Systems, University of Coimbra, Coimbra, Portugal

** Centre of Cardio-thoracic Surgery of the University Hospital of Coimbra, Coimbra, Portugal

{nseixas, hmanuel, carvalho, jh}@dei.uc.pt, antunes.cct.huc@sapo.pt

Abstract: Telemedicine is becoming an essential tool in
supporting the delivery of medical care and knowledge.
In many situations a store-and-forward strategy may be
applied in developing telemedicine services to enable
discussion among clinical experts. However, a perfectly
synchronized distributed environment has to be
guaranteed during on-line medical discussion in order
to avoid potentially critical misunderstandings. To
promote dissemination of telemedicine services, it is
desirable that cheap consumer level infra-structures
are applied to implement these solutions. This is a
major challenge for today’s distributed object
synchronization mechanisms, due to the limited
bandwidth and best effort service provided by the
internet.
In this paper, an extension to JMF (Java Media
Framework) is presented to enable the synchronous
exchange of application events and voice streams in low
bandwidth networks. The strategy employed is built
upon a simple event dictionary and an event
registration procedure. Practical tests have shown that
this mechanism enables adequate setup and
synchronization of distributed medical environments
with an overhead of 1Kbps.

Introduction

Recent advances in computing and data transmission
technologies, compression technology, high bandwidth
storage devices and communication networks enable
real time multimedia services over the Internet.
Telehealth services, such as telemonitoring and
teleconsultation are some of the most demanding and
appealing in this context. Telemedicine is regarded as a
significant breakthrough in medical care with major
potential, social and economic impacts. Besides
facilitating the prompt access to specialized medical
care (e.g. in remote or underdeveloped regions), there is
a great expectation for these solutions to be the pillars
for new preventative healthcare policies, as well as
relevant tools to support autonomy and quality of life.
This is particularly important in developed countries
where accentuated aging of the population is observed.
In these countries, major reduction in health expenditure
is expected to be achieved from adopting telehealth
solutions. These savings are expected to stem from
avoided dislocations of patients and professionals,
timely detection of disease development (which usually
enables more cost effective and safer treatments), as
well as avoided or shorter hospitalization periods.

An important application of telemedicine is the access
to a second expert opinion [1], which is particularly
relevant at several clinical specialty areas, with
significant shortage of specialists. Furthermore, disease
prevalence and incidence in some of these areas are
increasing, which puts further pressure on the health
provision system.
In order to accomplish a good telemedicine service, a
good quality of service (QoS) [2] is required in the
transmission of real time data. Inappropriate QoS is
usually perceived when a remote application does not
perform as expected, either by lack of accurate feedback
or by excessive response latency. In the context of
telemedicine applications, the perceived QoS is mainly
conditioned by the response latency as well as by the
achieved synchronization of the distributed
environment, i.e., by the achieved synchronization of
audio-visual data channels and user actions. The latter is
of paramount importance to achieve an unambiguous
and effective collaborative working environment. It is
observed that a certain limit of latency is acceptable, as
long as accurate synchronization among critical data
channels is achieved (for instance, if two physicians are
examining some patient data – e.g. an X-ray – in order
to avoid misunderstanding, it is fundamental that all
mouse actions match voice instructions during
reporting).
Currently, the Internet provides best effort service and is
limited by its bandwidth, delay and loss. Furthermore,
due to network and systems heterogeneity, the difficulty
to transmit real time data in an efficient and flexible
way is increasing.
At present, there are few available mechanisms able to
grant the necessary QoS for real time distributed
applications. Currently, QoS research and definition is
mainly concentrated at the network level defining
policies for scheduling strategies, queue management,
admission control and resource reservation (see, for
example, IntServ and DiffServ [2]). These solutions
usually require dedicated networks or special service
contracts at the provider level. In contrast, best effort
networks do not deliver the performance required for a
wide range of interactive and multimedia applications
that exhibit demanding latency and bandwidth
requirements: the behavior of a data stream in the
presence of congestion is completely unpredictable,
having no guarantee that a critical application will
perform correctly [3]. Under best effort IPv4 networks,
QoS solutions are mainly achieved at the application

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 level. Namely, in order to increase QoS new and more
fault tolerant coding techniques, such as the H264, have
been recently introduced. Other mechanisms required to
successfully implement telemedicine services over best
effort networks are fault tolerant and low bandwidth
event synchronization schemes. There are several
distributed object synchronization mechanisms available
over heterogeneous environments. The most widely
applied distributed object paradigms are the Distributed
Component Object Model (DCOM) from Microsoft [4],
the Common Object Request Broker Architecture
(CORBA) [5] from OMG, and the Java/Remote Method
Invocation (Java/RMI) [6] from JavaSoft. However, it
turns out that these mechanisms induce very high
latencies due to the large amount of exchanged data, as
well as their complexity in updating remote events.
In this paper, an alternative solution is proposed using
the Java Media Framework (JMF) [7], a flexible API
developed both by Sun Microsystems and IBM
Corporation for real time multimedia applications,
which is gaining increased interest by the software
development community. In the proposed solution,
synchronization between the voice data stream and the
application event stream is achieved by merging both
streams. In order to keep the bandwidth requirements
low, a dictionary based strategy is applied to encode
registered events for transmission. Furthermore, to grant
some level of fault tolerance, a retransmission
mechanism is applied. This solution was successfully
integrated and tested using HeartBit - a second opinion
telemedicine application where accurate
synchronization between the voice stream and
application events (e.g. mouse position, clicks, etc.) is
of paramount importance. Using this environment, three
types of tests were conducted: (i) using a LAN with
limited available bandwidth, (ii) using ADSL
connections of limited upload bandwidth (128kbps)
from different providers and (iii) an ordinary internet
connection between Portugal and Mozambique (both
had a maximum theoretical upload limit bandwidth of
128kbps).
In the next section the synchronization mechanisms as
well as the main implementation details are introduced.
Section 3 describes some of the achieved results in the
aforementioned tests. Finally, in section 4, some main
conclusions are presented.

The Synchronization Mechanism

The Conceptual Solution

The proposed solution is based upon a three layer
architecture. This provides the necessary abstraction in
order to enable its adaptation to different systems and
environment definitions.
The three layers are inspired on the OSI System
Interconnection model. Namely, they are equivalent to
the OSI Interaction Layer, Session Layer and Network
Layer. The Interaction Layer defines the presentation
interface to the application while collecting and
answering all the actions performed by the user. The
Session Layer is responsible for storing all the

definitions required for connection management and the
processing of the events, i.e. it is responsible for sending
the events to the local and the remote stack of
execution. It is in this layer that almost the whole
mechanism takes place, as will be detailed later.

EncodingDictionary

Component
registration

Dictionary

Component
registration

Decoding

Encoding Decoding

JMF

Mouse event Sound
Capture Mouse event Sound

Playback

Figure 1: Synchronization mechanism overview

Finally, the Network Layer provides all the necessary
services to interact with the network, and, therefore,
with the remote application, i.e., its main function is to
grant the transmission as well as the reception of the
issued and encoded events through the JMF API.
The conceptual solution proposed herein is depicted in
Figure 1. As it can be observed, the solution is
composed by the following main stages at the sender
side (at the receiver, the inverse operations are
performed): event capturing, component registration,
event coding and event transmission.

Event Capturing
Two types of events are considered in the proposed
mechanism: (i) private events, i.e. events that must not
be sent to the remote applications (e.g. local
management mouse clicks), and (ii) public events, i.e.,
events that must be transmitted to keep the distributed
working environment synchronized (e.g. starting video
reproduction button click).
In order to capture and to distinguish among these
events, two strategies may be applied: (i) to have a
dedicated thread that permanently monitors and
analyses the event stack of each client in order to
identify newly issued public events and (ii) to extend
the visual component classes with adequate overloading
of behaviors. The latter exhibits lower implementation
complexity and computational overhead, although it
implies the extension of all utilized public visual
component classes. Fortunately, in most graphical user
interface API this can be minimized by extending the
base class (e.g. the JComponent class in JAVA). For
these components the ordinary event capturing and
dispatching mechanism has to be changed. Namely,
once an event is captured it has to be cloned. One copy
of the event object is treated as usual, i.e., it is sent to
the event stack of the local client. The second copy of
the event object is sent to the session layer of the

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 mechanism that will encode and integrate it properly
into a valid JMF data stream in order to allow its
transmission to the remote application. In Java, this can
be easily achieved by overloading the appropriate event
listeners.
When the remote JMF’s data stream receives an event,
the application decodes the received array of bytes and
creates a compatible event message (object) that is sent
to the local event stack.

Component Registration
In order to be able to distinguish between public and
private events, as well as to filter valid event messages
at decoding a registration procedure is followed. Each
component is added with a public/private tag, a unique
component ID and its (x,y) coordinates. The
public/private tag indicates if the visual component is to
be sent or not to the remote application. The component
ID has two important functions: (i) it uniquely identifies
the visual component that issued the event and (ii) it
may serve to efficiently index a data structure where all
the active components are registered. Regarding the
registration mechanism, it is performed whenever a
visual component is created. This operation is composed
by two steps: (i) setting up the component unique ID,
and (ii) placing this object’s reference in the active
components data structure. When a visual component is
disposed (i.e. whenever a particular component is no
longer required due to, for example, a panel change), its
reference is removed from the active components data
structure. Whenever an event message is received, the
decoder uses this data structure to verify if the
component is active in order to further process the
message. If the component is not registered it is
discarded by the decoder.

Event encoding and decoding
JMF is built upon the principle of independent data
sources which may be multiplexed into one data source
in order to achieve a common time-base. Otherwise,
these data sources are transmitted asynchronously.
Hence, to achieve the required synchronization between
event and other data streams, a specific JMF data-source
has to be extended for the events. One possible solution
to build the event data stream could be using object
serialization. However, this strategy has two major
pitfalls: (i) in a JAVA environment it requires
compatible versions of the JVM at both application end-
points and (ii) in actual tests it was verified that an event
JAVA object does require an overhead of approximately
100kbps of available bandwidth to be transmitted in real
time, i.e., to avoid event lost due to packet dropping. As
JMF is built upon UDP packets, the later is a major
constrain in general propose IPv4 networks, since it
would occupy a major portion of the available
bandwidth leading to severe QoS deterioration (sound
quality, video quality and event delivery) due to packet
losses.
To drastically reduce this overhead, a smaller message
description mechanism was introduced. This message
has to encode all the important information about the
events to allow its unambiguous decoding at the remote

site. To perform the correspondence between event
object type and its ID, a dictionary lookup is performed.
Furthermore, each message is composed by the
concatenation of several context dependant elements
using a system independent encoding and transfer
syntax (encoding length and format, little or big endian
syntax, etc.). In a pure JAVA platform this may be
achieved by simply using elementary data types.
Otherwise, several encoding and transfer syntaxes are
available (e.g. the encoding and transfer syntax used in
DICOM). Figure 2 depicts a typical message structure
for a mouse event.

int
componentID

char
MouseEventID int Xposition int Yposition

int frame
()

string obs
(optional)optional

int frame
()optional

int
sequentialNum

Figure 2: Message structure.

In this example, the component ID is applied to identify
the exact visual component that issued the event. The
MouseEventId, represented by a char, together with the
next twp elements, Xposition and Yposition are used to
represent the type of event issued. It is of note that (x,
y) coordinates sent in this type of messages must not
represent absolute screen or even component
coordinates. These have to be encoded using a virtual
coordinate system, which has to be independent of the
size of the visual component as well as screen
resolution, so that, when the event is performed in the
remote application, the positioning can be correct, even
if the remote visual component exhibits different
geometrical properties (size, position, etc.).
Depending on the type of event, there may be several
other event dependant fields, as well as optional fields.
For instance, in order to keep the reproduction of multi-
framed clinical exams synchronized, the number of each
visualized frame may be sent in a specific event
message. The actual structure of each event message is
inferred from the message ID fields and from the
dictionary.
At the remote application client, once an event message
is received, the inverse flow of operations is performed
to build a regular event object for the local platform.
This object is then placed on the application’s event
message stack.

Event management and transmission
JMF data streams are transmitted using the RTP
protocol. This may lead to packet losses under network
congestion, since it uses UDP packets transmission.
From the user perspective this may induce some critical
and annoying situations. It is well known that the human
auditory perception is able to adequately reconstruct lost
audio packets from context. However, losing an event
may completely compromise the collaborative working
environment (e.g. missing to move the mouse pointer to
a specific region of an X-ray during reporting).
Therefore, some fault tolerance mechanism is required

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 at this stage. Actually, there are several solutions for
this problem. One could implement a packet reception
acknowledge mechanism, similar to TCP. This solution
would, however, induce a considerable computational
overhead, while doubling, at least, the latency. Another
solution can be the periodic repetition, up to a maximum
number of times (typically this should be limited to
some milliseconds), of the issued events. In order to
avoid the duplication of these events, they have to be
filtered at the receiver. This filtering mechanism
consists in saving the last event received for each visual
component at the remote application side and to
compare it against similar events previously received
(up to given time-out). Assuming that packet losses are
iid, it is observed that the probability of lost decreases
by the exponent n, where n is the number of repetitions.
Hence, using this mechanism it is possible to control the
probability of losing an event. Of course, this solution
leads to a linear increase of the required data to be
transmitted. However, given the small data overhead
induced by the described dictionary message encoding
approach, it is observed that this solution is quite
acceptable for most type of events. Since, the applied
data packets are UDP, packet ordering is not guaranteed
at reception. Hence, in these messages a message
number is sent. Each event source has its independent
counter, which is only incremented when a new event is
issued by the source. The receiver will ignore all
messages whose message number is less or equal to the
last received event message of the same source (to allow
counter reset a threshold may be applied).
Exceptions to the described strategy are events issued
by mouse movements. Usually, it is observed that these
events tend to be issued in very small time periods in
bursts. Hence, the described procedure could induce
some latency. To solve this, during mouse movements,
events are send in 25 millisecond intervals to the remote
application. To achieve the necessary mouse positioning
accuracy when the mouse movement stops, an event
message that encodes the current mouse position is
periodically sent to the remote application, by using an
independent thread. This avoids the aforementioned
drawbacks, while granting the necessary mouse
positioning accuracy required for most telemedicine
applications. At the receiver, before inserting the newly
arrived mouse move event, the event stack is checked
and similar events waiting to be dispatched are removed
if they are contiguous and their (x,y) correspond to less
than a predefined horizontal or vertical translation.

JMF Integration

As was already stated, the synchronization mechanism
is built upon the JMF API. This API is responsible for
the management of connections and real time data
streams, and natively uses independent datasources for
sound and video. To have a common time base between
one of these sources and the event data stream, it is
necessary to extend a specific datasource. This process
enables JMF to multiplex both streams into one data
stream at the sender and to perform the inverse
operation at the receiver, as depicted in Figure 3.

Demux

IP

RTPManager

RTP

EvtDEpacketizer

UDP

DataSource

Processor

Processor
MiscProcessor

Processor
Mux

Processor

UDP

IP

RTPManager

RTP

EvtPacketizer

DataSource

Figure 3: JMF (top) receiver model; (bottom) sender
model.

To achieve this, a new JMF compatible codec for the
event data stream has to be defined and registered in
JMF. For this goal, two classes need to be implemented:
EvtPacketizer and EvtDepacketizer. The former is
responsible for encoding the data received from the
capture device into the assigned encoding format. The
latter class is responsible for the decoding, performing
the reverse process. These classes implement the JMF
Codec interface and overload its process method,
responsible for encoding and decoding the received
packets. In the current implementation, the only action
taken in this process is to transfer the stream into the
data buffer (encoding) and to perform the inverse
operation during decoding. The EvtPacketizer and
EvtDepacketizer classes are responsible for carrying
information about the new codec and supported formats,
which are registered by the built-in JMF object
RTPManager, through the addFormat method. This
manager class is responsible for setting up the RTP
session variables, like local and remote addresses.
Associated to the session there is a stream that allows
the communication between the two endpoints.
Whenever new data arrives through this data stream, an
event is triggered to the corresponding listener. In order
to process the incoming data, SyncReceiver and
SyncSender classes have to be implemented as
RTPManager‘s session listeners. These classes must
overload the update method, responsible for datasource
association to the session stream.
In order to enable the SyncSender class to handle and to
process the received data (events or sound), it is
necessary to declare it as a controller listener, by
overloading the controllerUpdate method.
When the RTPManager receives data from the
incoming data streams, a datasource has to be
associated in order to receive and to manipulate (stop
and start) the data using the SyncReceiver, through the
associated Processor.
When receiving data, a single datasource is de-
multiplexed into several different datasources, each one
being accessed by the correspondent Processor (e.g.
events and sound). When sending events and sound, the
two Processors feed one MiscProcessor that will merge

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 them into one single datasource, as depicted in Figure 3
(bottom).

Experimental Results

The described synchronization mechanism was tested,
integrated into a telemedicine application specifically
developed to enable distributed real time clinical exams
discussion and reporting between to clinical experts (see
Figure 4).

Figure 4: HeartBit screenshot.

In this type of applications it is fundamental to keep the
voice stream perfectly synchronized with mouse
movements as well as with application control
commands (e.g. playing or stepping through a multi-
frame exam). This application presents at each client
two mouse pointers, one remote and one local. To test
mouse position accuracy and its synchronization with
respect to the audio stream a test image with several
well identified landmarks was used, as it can be seen in
Figure 5.

Figure 5: Test image with landmarks.

During the performed tests, the remote user moved his
mouse pointer through the landmarks (using sequential
and non-sequential mouse movements) on the image
while stating the landmark number under his mouse
pointer. Synchronization between the audio stream and
the mouse position was evaluated qualitatively by the
remote user. A similar setup was applied for assessing
the synchronization of stepping operations through

multi-frame exams. During all these tests an audio
stream and a video stream were transmitted between
each client application. The applied codecs were,
respectively, the G.723 and the H.263 (QCIF at 5fps),
which are part of the JMF implementation.
Regarding the network setup, three types of networks
were applied: (i) a LAN (laboratory of Centre for
Informatics and Systems) with limited bandwidth (the
bandwidth was artificially limited using a commercial
Bandwidth Controller [11]), (ii) a WAN through ADSL
connections of limited upload bandwidth (128kbps)
from different providers and (iii) an ordinary WAN
intercontinental internet connection between Portugal
and Mozambique. Each of these tests have been
performed at several levels of network congestion by
choosing different timings for the performed tests (no
actual network congestion measurements were
performed; congestion was assessed using ping response
latency).
The achieved results are reported in Table 1.

Table 1: Result table that present the several
synchronization testing stages. (*) Adapted by bit rate
controller.

Used bandwidth (kbps) Test
Video Sound Events

Quality

LAN@
128Kbps 80 40 1

Good sound quality,
synchronized with the
remote events

LAN@
81Kbps 40* 40 1

Acceptable sound
quality, synchronized
with the remote events

Regional
WAN 80 40 1

Acceptable sound
quality, synchronized
with the remote events

Regional
WAN OFF 40 1

Good sound quality,
synchronized with the
remote events.

IntCont.
WAN 80 40 1

In Mozambique:
acceptable sound
quality, events
synchronized but with
some marginal losses.
In Portugal:
not understandable
sound, unable to
synchronize events.

IntCont.
WAN OFF 40 1

In Mozambique:
good sound quality,
events synchronized.
In Portugal:
Sound not perceivable,
unable to synchronize
events.

As it can be observed from the tests performed using the
LAN of the laboratory with bandwidth strangling, the
application performed as expected up to a limit of
81kbps of available bandwidth. If the video data stream
was turned off, similar results were achieved up to a
limit of 41 kbps. In each case it was observed that the
required bandwidth for sending the synchronization
events was 1Kbps. This is a significant result compared
to 100kbps of required bandwidth, if ordinary event
object serialization is applied (it should be noted that

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 currently most internet connections do not provide this
bandwidth).
The performed tests WAN based on two commercial
128 kbps (upload) ADSL connections in the same
country (provided by two different providers) provided
similar results, i.e. good sound quality was achieved
with a perfectly synchronized environment. Only few
events were lost during these tests (no actual
measurement was performed).
As was already mentioned, a third series of tests were
carried out in an intercontinental operation scenario
using a regular internet connection. Namely, several
sessions between Portugal and Mozambique were
conducted. During all these sessions it was observed
that sound and events initiated at the Portuguese side
arrived fully synchronized at Mozambique and that
events loss was insignificant. Regarding the video
quality, a significant packet loss was noticeable (an
image without reconstruction errors was only obtained
from I frames; almost all predictive frames induced
noticeable reconstruction errors in several blocks). It
should be noted that the H263 is very sensitive to packet
losses; this problem has only been addressed in the new
H264 where multiple references for predictive blocks
are available. In this context the H264 could solve the
aforementioned problem with the added advantage of
being a much more optimized codec with equivalent
video quality at much lower bit rates.
Regarding the data flow from Mozambique to Portugal,
a very high packet loss rate was verified. It was
observed that almost none of the transmitted video
frames could be reconstructed at the receiver without
significant error. Furthermore, the sound was almost
imperceptible due to jitter and high packet loss. Finally,
most synchronization events were lost. The differences
between the two flows are now under analysis by the
African network provider. The explanation for this
behavior may come from observed latency times. In
fact, when connecting to Mozambique, this measure
increases rapidly, causing a massive packet drop in the
UDP protocol.

Conclusions and Future Work

This paper introduces a mechanism to synchronize
events for real time distributed applications in low
bandwidth and best effort networks. Although this
mechanism was build upon the JMF API it is easily
adaptable for other commercial and non-commercial
videoconference APIs operating in heterogeneous
environments.
Several tests conducted under real-life conditions have
shown that the proposed mechanism is able to achieve
the required synchronization, even for events that occur
with high frequency, with a communication overhead of
1kbps. Furthermore, although it may not be absolutely
guaranteed that the sent events actually arrive at the
destination, a retransmission mechanism was defined to
minimize event losses. This is a topic that has to be
further researched. One possible solution could be the
incorporation of an acknowledge mechanism to signal
the event source that the event message has been

delivered successfully. This could be used by the event
source to signal the local user that a given command
was successful or unsuccessful at destination. However,
this may not be the typical TCP mechanism, since once
an event is triggered locally it must produce immediate
effect in order to keep it synchronized with the voice
and video streams.

Acknowledgements

This project was partially financed by POSI of the
Portuguese Foundation for Science and Technology and
the European Union FEDER. The authors would like to
express their acknowledgement to VisaBeira, S.A., and
to the Instituto do Coração de Moçambique for
providing the necessary technical support and resources
for the intercontinental tests. In this context, we would
like to acknowledge the direct involvement of Eng. José
Luís Nogueira, Eng. David Rodrigues and Eng. Jorge
Cunha from VisaBeira, S. A..

References

[1] BARBOSA, A. (2001): ‘HealthNet: Um sistema

integrado de apoio ao telediagnóstico e à segunda
opinião médica’, Master Thesis, Center of
Informatics, Pernambuco Federal University.

[2] PEREIRA, H., CURADO, M., CARVALHO, P. (2005):
‘QoS in real time data transmission’, Department of
Informatics Engineering, University of Coimbra.

[3] WU, D., HOU, Y. T., AHU, W., ZHANG, Y., PEHA J.
(2001): ‘Streaming Video over the Internet:
Approaches and Directions’, IEEE Transactions On
Circuits and Systems for Video Technology, vol. 11,
N.3, pp. 283-300.

[4] WANG, Y., DAMANI, O., LEE, W. (1997) ‘Reliability
and Availability Issues in Distributed Component
Object Model (DCOM)’, AT&T Labs-Research and
Univ. of Texas at Austin and New York University.

[5] WANG, L., RODRIGUEZ-TOMÉ, P., REDACHI, N. (2000):
‘Accessing and distributing EMBL data using CORBA
(common object request broker architecture)’,
Genome Biology - research 0010.1-0010.10; 2000.

[6] WALDO, J. (1998): ‘Remote procedure calls and Java
Remote Method Invocation’, Sun Microsystems.

[7] SUN MICROSYSTEMS, INC. (1999): ‘JMF 2.0 API
Guide - Working with Time-Based Media’,
http://java.sun.com/products/javamedia/jmf/2.1.1/guid
e/JMFTBM.html

[8] ZHANG, J., STAHL, J, HUANG, H., ZHOU, X., LOU, S.,
SONG, K. (2000): ‘Real-Time Teleconsultation with
High-Resolution and Large-Volume Medical Images
for Collaborative Healthcare’, IEEE Transaction on
Information Technology in Biomedicine, vol. 4, No.2,
pp. 178-185.

[9] BOUAZIZI, I., GUNE, M. (2003): ‘A Framework for
Transmitting Video over Wireless Networks’,
Department of Computer Science, University of
Aachen.

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 [10] WOLF, S., PINSON, M., CERMAK, G., TWEEDY, E
(1997): ‘Objective and Subjective Measures of MPEG
Video Quality’, Institute for Telecommunication
Sciences.

[11] http://www.bandwidthcontroller.com.

