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Abstract: The definition of reproducible geometric
measures is important for navigated, medical image
based implantations of the humeral part of a shoulder
endoprosthesis which aims at finding the anatomic op-
timal position of the prosthesis. Boileau et. al. [1, 2]
recommend the use of certain bony landmarks for a
prosthesis alignment to the humerus. In a pilot study,
we investigated whether the specified landmarks can
be reliably calculated based on the segmentation re-
sults obtained from freehand acquired 3-D ultrasound
image volumes of the humerus. Methods for the iden-
tification of these landmarks and their accuracy are
described.

Introduction

During the implantation of a prosthesis into the
humerus, surgeons often tend to reconstruct the preoper-
ative anatomical relations. A typical problem with older
prosthesis models was that they only offered restricted
possibilities to realize all demanded relations between
e.g. proximal humerus shaft axis, retrotorsion angle, and
humeral head orientation. Modern 3rd and 4th genera-
tion prostheses for the humerus allow the adjustment of
the prosthesis according to these parameters in a flexible
manner. The opportunity of a precise reconstruction on
the one hand makes it necessary to accurately determine
the preoperative anatomical situation on the other hand.

The definition of a reproducible local coordinate sys-
tem (LCS) is a first necessity for an objective quantifi-
cation of anatomical relations in bones. For the shoulder
joint, the ISB recommends the use of the center of the
humeral head and the medial and lateral epicondyles [3].
For a precise and accurately navigated implantation of
a humerus endoprosthesis, even these landmarks are not
sufficient. Boileau et. al. [1, 2] recommend the use of cer-
tain additional bony landmarks (fig. 1) like the proximal
humeral shaft for the objective description of the shoulder
joint’s geometry.

For a completely ultrasound image based navigated
implantation these landmarks must be determined from
ultrasound images. The presentablity of all landmarks in
3-D ultrasound volumes has already been shown [4]. Fur-
thermore, a semi-automatic detection of the landmarks in
such image volumes was already presented [5]. In this
work, we describe a method for the identification of the
spatial location of landmarks. Additionally, the derivation
of more abstract anatomical measures from such land-
marks is presented.

Figure 1: Humerus landmarks.
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 Materials and Methods

The geometry of ten human humeri was determined
by scanning the entire humeral surface with 3-D ultra-
sound to determine specific anatomical landmarks. The
acquisition technique, the landmark measurement and the
parameter identification are described in the following.

Technical equipment

An appropriate image acquisition technique, using a
conventional 2-D ultrasound imaging system (NemioT M

SSA-550A, Toshiba, Tokyo, Japan) employing B-mode
imaging from 6-12 MHz and an infrared optical localizer
system (PolarisT M , Northern Digital Inc., Waterloo, On-
tario, Canada) was specified and developed (fig. 3).

Figure 2: Ultrasound probe with optical DRB and rigid
transformation; Figure modified from [6].

An infrared optical dynamic reference base (DRB)
was attached to the ultrasound probe. The position as well
as the orientation of the DRB and the 2-D images were
recorded simultaneously during a manually performed
freehand sweep on a standard PC (Intel PentiumT M IV,
3.2 GHz, 512MB). The B-mode images were captured
from the S-VHS video output of the ultrasound imag-
ing system and digitized using a conventional external
video grabbing card (ADVCT M 55, Canopus, San Jose,
California, USA). The image series consisted of approx.
1000-1500 B-mode images at a sample rate of 6 im-
ages/sec.

Calibration of the transducer

A 3-D ultrasound image volume is generated from
2-D B-mode images. For this the position and orientation
of the images must by known. These pose data cannot be
measured directly using a conventional transducer, so an
infrared position sensor is attached to the probe. To fi-
nally determine the transducer’s pose data, the measured

sensor’s pose data must be transformed using the coordi-
nate system transformation from the DRB position sensor
to the B-mode ultrasound image (fig. 4).

Calibration – method

This coordinate system transformation must be deter-
mined from a calibration. The experimental data come
from a perspex cube, whose surface is recorded in free-
hand ultrasound sweeps. As an ultrasound image can be
assumed to be a half plane, the intersection between a
B-mode image and a cube’s plane is a straight line (see
fig. 5). These image data are utilized to determine the un-
known parameters of the coordinate system transforma-
tion parameters [7], i.e. three rotation angles and three
translation components, thus the image points can be
arranged to form a cube’s plane.

Calibration – parameter identification

To identify the unknown parameters, the following
transformation equations are used, which relate the ref-
erence (localizer, R), DRB position sensor (S), and ultra-
sound image (I) coordinate systems. In the transforma-
tions from localizer R to sensor S

xR = R̂SRxS + x̂SR (1)

and from sensor S to B-mode image I

xS = RISxI +xIS, (2)

ROR denotes a 3×3 matrix that represents the rotation
from a reference coordinate system R to an object coor-
dinate system O, and xOR denotes the respective 3× 1
translation vector.

The coordinate system transformation from localizer
R to sensor S is known from measurements (R̂SR, x̂SR).
Furthermore all cube’s surface points xR, apart from mea-
surement errors e, lie on a plane:

xT
R ·n−ρ = e≈ 0, (3)

where n denotes the plane’s normal vector with |n| = 1,
and ρ is the shortest distance between the reference
coordinates system’s origin and the (infinite) plane.

The cube’s surface points are visualized as a straight
line in the ultrasound images. They can be determined
– e.g. by a Hough transform [8] where the correct line
(fig. 5) can be determined correctly as the maximum of
the accumulator (fig. 6) even for noisy image data – and
have image coordinates xI . To calculate their correspond-
ing positions in the reference coordinate system, eq. (2)
is inserted into eq. (1):

xR = R̂SR (RISxI +xIS)+ x̂SR

= R̂SRRISxI + R̂SRxIS + x̂SR (4)

The substitution of eq. (4) in the plane equation (3)
�

R̂SRRISxI + R̂SRxIS + x̂SR

�T
·n−ρ = e≈ 0 (5)
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Figure 3: Recording of three-dimensional ultrasound image volumes: technical realization.

Figure 4: Coordinate system transformations between the
objects: R = reference (localizer), S = DRB position sen-
sor, and I = ultrasound image. RIS and xIS must be iden-
tified from a calibration.

leads to an equation for the determination of the six un-
known parameters. For this, three additional unknown
parameters were introduced by the plane equation (3),
therefore nine parameters need to be identified.

In this setup, three orthogonal cube planes are used.
For each plane, N ≈ 15 images are recorded. The image
vector

xI(i, j) =

2
4xIx(i, j) · sx

xIy(i, j) · sy
0

3
5

shall now denote the j-th pixel on the line in the i-th im-
age, i = 1, 2, 3, ..., N−1, N. sx denotes the width and
sy the height of a pixel in millimeters.

To reduce the computational effort of the parameter
identification, only two ( j = 1,2) representative pixels of
the i-th image are exploited, e.g. those pixels which are
furthest apart from each other. Eq. (5) is thereby changed
as follows:

[R̂SR(i) RIS xI(i, j) +
R̂SR(i) xIS + x̂SR(i)]T ·n−ρ = e(i, j)

(6)

where

i = 1,2,3, . . . ,N−1,N,

j = 1,2.

J(RIS,xIS,n) is the error function for 2N points,
which has to be minimized:

J (RIS,xIS,n) =
NX

i=1

2X
j=1

[(R̂SR(i)(RISxI(i, j)+xIS)

+x̂SR(i)− x̄R)T ·n]2 → min. (7)
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Figure 5: B-mode ultrasound image (gray scale inverted)
containing a straight line (green) which belongs to a
cube’s plane. Below, an additional line artefact is visible.

The distance ρ to the plane is then given by the center
point x̄R:

ρ = x̄T
R ·n with x̄R =

1
N

NX
i=1

xR. (8)

The eight free parameters in eq. (7) cannot be calcu-
lated in closed form. They are identified using a numeri-
cal optimization algorithm. Here, the simplex method ac-
cording to Nelder and Mead is applied [9].

After the parameters are determined, the coordinate
system transformation from DRB sensor S to B-mode im-
age I (2) is known. Now the spatial position xR can be
calculated for each image pixel xI using eq. (4).

Approximation of anatomical structures by geometric
bodies

As known from anatomy, the humeral head only
forms a segment of a sphere whose area is only about
40% of the whole spherical surface. Accordingly only
80% - 90% of the proximal humeral shaft data fit to a
cylinder. This introduces an inherent instability for the
identification of the parameters of geometric bodies since
the points additionally are in general substantially cor-
rupted by segmentation errors. To generate a robust, i.e.
data insensitive identification, an iterative approach is
used for the spherical fit [10]. The robustification consists

Figure 6: Hough accumulator with unique maximum in-
dicating the parameters for a straight line.

in the iterative computation of reference bodies and the
stepwise rejection of irrelevant voxels. Such procedures
tend to be numerically costly dependent on their algorith-
mic structure. Typically, an iteration is used to systemat-
ically reject false data until the approximation is “opti-
mal” in a certain sense. The approximation itself should
be determined straightforward to reduce processing time.

A segmentation procedure shall have generated scat-
tered data from a previously recorded 3-D ultrasound im-
age volume that now shall be approximated by a cylinder
(humerus shaft) and by a sphere (humerus head) respec-
tively in each case.

Approximation – humerus shaft

N humeral shaft voxels xR(i), 1 ≤ i ≤ N, determined
by a specific segmentation algorithm, shall be approxi-
mated by a cylinder with center x0 = [x0 y0 z0]T , sym-
metry axis vector xc, and radius R. These parameters are
determined by an iterative algorithm.

This algorithm is initialized by a principal compo-
nents analysis (PCA, [11, chap. 4.5]) of the voxels. Their
center point is a starting guess for x0, and the PCA axis
belonging to the largest eigenvalue gives the initial value
for xc.

The following algorithm is processed:

(0) determine initial values x0 and xc from PCA
(1) determine all radii ri between voxels xR(i) and cylin-

der axis xc:

ri =
|xc× (xR(i)−x0)|

|x0|

(2) sort all determined radii ri and store them in a dis-
tance vector r

(3) determine the cylinder radius R as the median of the
distance vector r: R = median(r)

(4) determine the radius errors

ei = median(r)− ri (9)
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 (5) compute the sum of squares J =
P

i e2
i , where i is in

the range of 5% - 95% of the distance vector r to
reject invalid measurements

(6) if the minimization criterion of the numerical opti-
mization algorithm [9] is fulfilled go to step 7, else
generate new parameters x0 and xc and go to step 1.

(7) x0, xc and R are the optimal cylinder parameters, J is
is a measure for the accuracy of the fit

Approximation – humerus head

N humeral head voxels xR(i) = [xRi yRi zRi]
T , 1 ≤

i ≤ N may have been generated by another specific seg-
mentation procedure. They form a set of scattered data,
which shall be approximated by a sphere (10) with center
[x0 y0 z0]T and radius R:

R2 = (xRi− x0)2 +(yRi− y0)2 +(zRi− z0)2,
1≤ i≤ N.

(10)

At first glance, the sphere’s parameter identification
seems to be a non-linear problem. By re-ordering of the
sphere equation (10), it is transformed to the parameter-
linear form

[−2xRi −2yRi −2zRi 1]| {z }
aT

i

·
�
x0 y0 z0 (−R2 + x2

0 + y2
0 + z2

0)
�T

| {z }
θθθ

=−xRi
2− yRi

2− zRi
2| {z }

bi

.

(11)
Applied to all N humeral head voxels, these equations

can be noted in a compact vector form

Aθθθ =

2
6664

aT
1

aT
2
...

aT
N

3
7775θθθ , b =

2
6664

b1
b2
...

bN

3
7775 .

Due to segmentation and measurement errors, eq. (11)
can only be solved up to an approximation error ei if it is
applied to N > 4 humeral head voxels:

aT
i ·θθθ −bi = ei ≈ 0. (12)

Thus, for all voxels, an overdetermined linear equa-
tion system

Aθθθ −b = e≈ 0 (13)

must be solved.
This system shall be determined to minimize the sum

of squared errors (minimal least squares fit): eT e → min.
This minimum is found for the parameter vector [11,
chap. 19.2]

θθθ =
�

AT A
�−1

AT b. (14)
�
AT A

�−1 AT is the so called pseudoinverse of the ma-
trix A. Eq. (14) can be calculated efficiently, whereas the

robustification strategy – see step (0) of the following al-
gorithm – greatly influences the processing time.

The approximation humerus head approximation has
the following algorithmic structure:

(0) randomly reject 10% of the segmented voxels
(1) determine the sphere parameters θθθ from eq. (14)
(2) compute the sum of squares J = eT e with e from

eq. (13)
(3) if the minimization criterion of the numerical opti-

mization algorithm [9] is fulfilled go to step (4), else
go to step (0).

(4) calculate the optimal sphere parameters from θθθ , J is
is a measure for the accuracy of the fit

Results

Fig. 7 depicts typical calibration results. The calibra-
tion of the B-mode ultrasound images generated a mean
plane approximation error (eq. 5) of less than 3 pixels or
0.3 mm. About 80% of the pixels fit better than 5 pixels
or 0.5 mm. The transformation of voxel positions to the
reference coordinate system is therefore very precise.

Figure 7: Deviation |e(i, j)| from approximated planes

The humeral head and shaft can be approximated by
geometrical bodies using the described algorithms. The
90% quantile of the absolute approximation errors is less
than 2 mm. Results of the approximation are shown in
fig. 8.

As depicted in fig. 9, the distance between the bone’s
surface and the idealized geometry varies mostly between
0 mm and approx. 2 mm with only a few outliers, which
confirms the assumption that approximation of the proxi-
mal part of the humerus by a cylinder and of the humeral
head by a sphere is meaningful.

Discussion

The determination of humerus landmarks is success-
ful. The approach to approximate geometric bodies using
data-robust algorithms must be further investigated for its
sensitivity to the portion of rejected data. Additionally,
the segmentation algorithm has to be refined to reduce
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Figure 8: Approximation error |ei| data vs. cylinder (top
view, cf. eq. (9)) and data vs. sphere (side view, cf.
eq. (12)).

or better to avoid falsely segmented pixels. To be able
to implement a complete planning scenario, an automatic
detection of the epicondyles must be realized.

The geometric modeling of anatomical structures
seems to be applicable also e.g. for the lower limb, es-
pecially the femoral head, neck and proximal shaft.

Conclusions

The chosen approach for landmark identification in
the humerus can be assumed to be valid due to the good
visual and numeric approximation of the segmented data.
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