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Abstract: Measurement of electrical bioimpedance 
enables to characterize a state of tissues/organs, to 
get diagnostic images, to find hemodynamical 
parameters, etc. In this paper we consider two ways 
for processing signals in a digital multichannel 
bioimpedance analyser developed for monitoring of 
the state of a working heart.  
 
Introduction 
 

Measurement of electrical bioimpedance enables to 
characterize a state of tissues/organs, to get diagnostic 
images, to find hemodynamical parameters, etc. [1-3]. 
In this paper we consider two ways to process signals in 
a digital multichannel bioimpedance analyser developed 
for monitoring of the state of a working heart [4]. 

 
 
Materials and Methods 
 

A simplified block diagram of the developed digital 
multichannel bioimpedance analyser (DMBA) is 
presented in Fig. 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 1.  Block diagram of the DMBA. 
 
In the DMBA eight sinusoidal excitation currents of 

eight frequencies ef  are formed and simultaneosly sent 
to one, two or four excitation electrodes put in the heart. 
In case of two/four electrodes the excitation frequencies 
form four/two groups of close (but different) values and 
enable thus to compare the frequency responses to the 
excitations from different electrodes. 

One, two or four measurement electrodes receive 
summary responses to all the excitations. Every 
response is a sum of eight excitations modulated by 

slowly varying bioimpedances )( efZ&  (which include 
heart-beat and breathing components) and a slowly 
varying offset (caused by bioelectrical activity of the 
heart). 

The complex bioimpedances Φ⋅=+= jeMjXRZ&  
are measured for all the 84×  tissue/frequency channels 
(between different electrode pairs at eight frequencies 
from 1 or 10 kHz up to 1 MHz) with a frequency 

kHz10 =f . 
The excitation frequencies ef  and also the sampling 

frequencies sf  are chosen to be integer multiples of 0f . 
As in the developed DMBA the whole signal path from 
the generation of the set of excitation signals to the A/D 
conversion procedure and data analysis is synchronous 
by design, optimised signal processing methods can be 
applied. The frequency components of the entire test 
signal are designed to meet the endpoint discontinuity 
requirements and are therefore well suited for direct 
discrete Fourier analysis without applying preceding 
windowing procedure and also for synchronous 
detection.  

The complex values of bioimpedance Z&  can be 
found for the excitation frequencies 0fnf ee =  
processing the responses from the measurement 
electrodes in two basic ways, which both use 
undersampling (aliasing) and sparsity of the 
excitation/response spectrum. Let us consider these 
approaches and the accompanying restrictions for the 
values of the excitation and sampling frequencies. 

 
Fourier transform based solution.  

This solution applies well-known discrete Fourier 
transform (DFT). Arbitrary desired )( efZ&  is found in 
result of a direct discrete Fourier transform of the 
response (of the frequency 0f ) as the then  Fourier 
coefficient (if 2/se ff < ) or as a Fourier coefficient 
which is made nonzero by just one nonzero aliasing 
component (if 2/se ff > ). It is evident, that in such a 
case the choice of excitation frequencies is restricted: 
their ratios must have properly chosen values. A more 
restricted choice of the excitation and sampling 
frequencies (their ratios) allows us to find Z&  for all ef  
as Fourier coefficients of fixed (or even consecutive) 
numbers. 
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 The DFT is performed so that only the (nonzero) 
coefficients for the used excitation frequencies are 
computed. In case of single-point DFT the analysis 
frequency always matches the input frequency and only 
the energy at one frequency bin of the DFT spectrum is 
looked. As a result, the amount of computations is 
reduced. Analogous approach is used in the 
commercially available impedance converter network 
analyser AD5933 [5].  

This approach has been implemented in the first 
version of the developed DMBA.  

The recursive Fourier transform (RFT) [6,7] is 
applicable too, but we have not considered this 
possibility in detail. 

 
Synchronous detection based solution.  

In this case )( efZ&  is found for every tissue/ 
frequency channel applying a pair of synchronous 
detectors, which both sum eN  samples with 
periodically changed signes over 00 /1 fT =  to compute 
real and imaginary parts )( efR  and )( efX  of the 

bioimpedance )( efZ&  on the basis of the found two 
sums eres ,  and eims ,  as follows: 
 

eeree CsfR ⋅= ,)(    and   eeime CsfX ⋅= ,)(  (1) 
 
where  

eewe NCC ,=     (2) 
 
and ewC ,  is a waveform coefficient determined by the 
ratio es ff .  

Such signal processing is applicable, if the excitation 
and sampling frequencies satisfy certain restrictions: 

 
1) The lowest-frequency excitations of the electrodes 

1, 2, 3 and 4 are e.g. the 10th, 11th ,12th and 13th 
Fourier components of the summary excitation of 
the frequency 0ff ≥Σ  (difference of the 1st level 
frequencies must be below the desired 10%, every 
chosen component number must have a unique 
divider) and the higher-frequency excitations (of the 
levels Ll ,...,3,2= ) can be the Fourier components 
of 1)2( −⋅ lI  times higher numbers, where the odd 
integer I  can be 1 but not any other divider of the 
chosen component numbers (10, 11, 12, 13). 

2) L  pairs of detectors, which find Z&  at the 
frequencies of L  excitation signals of one 
excitation electrode, work using a common uniform 
sample train. The frequency of this train is JL 12 +  
times higher than the electrode’s lowest excitation 
frequency. The undersampling factor, i.e. the odd 
integer 0ffJ Σ<  can be 1, but not any other 
divider of the chosen component numbers. A union 
of such sample trains can be considered as a 
summary nonuniform (but periodic) sample train.  

Let us assume that eN  last subsequent summary 
response values are stored in the array V  so that after 
fullfilling the array ( )(iV  in the order eNi ,...,2,1= ) 
always the oldest element value )( oldold iVv =  is read 
out and replaced by the next new summary response 
value newold viV =)( . After that if eold Ni =  then oldi  is 
set equal to 1, otherwise 1+= oldold ii  (initial 1=oldi  
and initial values of V  are zeros).  

Let us assume also that we have found the sum es  
of eN  latest values stored in )(iV  which were taken for 
summing with appropriate sign ( −+ or ). Then the new 
sum of eN  latest values in V  can be found as  

 
)(,, oldnewoldenewe vvss −±=    (3) 

 
where the sign ( −+ or ) is determined by oldi  and by 
corresponding frequencies ef , sf  and 0f  (of course, 
the sign changes are in quadrature for computing real 
and imaginary parts of )( efZ& ).  

Thus, in order to obtain a new value )( efZ&  for one 
tissue/frequency channel at every sampling step, one has 
to perform at every step only two operations (3) to find 
the sums eres ,  and eims , , and the multiplications (1).  

On the other hand, if noise suppression of the 
considered here approach appears to be insufficient, 
then it is possible to choose one of the two next ways to 
improve it: 

 
1) The values eres ,  and eims ,  (found for computing 

)( efZ& ) can be stored in two separate arrays of the 
length eavN ,  like the measurement signal values in 
V  and also processed in the same way. As a result, 
the latest eavN ,  sums can be averaged at an abitrary 
sampling interval for further finding averaged 
values of )( efR  and )( efX  according to (1); 

2) The currently found sums eres ,  and eims ,  can be 
used to produce at every sampling step the averaged 
values of such sums es  according to  

 
neweeoldeenewe sss ,,, )1(~~ αα −+=   (4) 

 
where newes ,  is a new (current) sum, a properly 
chosen 1<eα  is close to 1 and the first average 
value newes ,

~  .is set equal to newes ,  (the initial 

neweolde ss ,,
~ = ). These averaged values eres ,

~  and 

eims ,
~  can be used in (1) to obtain the desired results..  
 
In both concidered solutions the offset is found as a 

direct component of the measurement signal.  
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 Results and discussion 
 

Simulations and the first tests have shown that the 
described signal processing methods work. The Fourier 
transform based approach suits better for DSP solutions, 
the synchronous detection based approach seems 
attractive for specialized low-power ASIC solutions.  

In order to obtain information about real problems 
(disturbances, distortions) and to find the most practical 
way for signal processing, the first version of the 
analyser has been realised. This version applies discrete 
Fourier transform and it has been tested in close-to-real 
working conditions. In result of the first tests we can 
state the following:  

 
1) Realization of A/D conversion appeared to be the 

main bottle-neck, which did not allow us to use in 
case of 1, 2 and 4 measurement electrodes (1, 2, and 
4 multiplexed responses) sampling frequencies over 
800, 400 and 200 kHz correspondingly.  

2) Even at these maximal sampling frequencies the 
noise suppression achieved by means of the discrete 
Fourier transformation was not good enough. The 
noise masked the small (from fraction up to some 
per cent) modulations caused by the varying 
bioimpedance. Thus we had to introduce into the 
DMBA (in Fig.1) first order analog low-pass filters 
for conditioning the measurement signals and also a 
digital compensation of the analog filter’s 
frequency response. In this way a sufficiently low 
noise level was achieved at the output.  

The detailed description of this analyser version and the 
final test results can not be presented yet.  

As we wanted to compare noise suppression 
capabilities of the discrete Fourier transform and the 
synchronous detection, we simulated analysis of an 8-
component test signal with added offset and Gaussian 
white noise. Processing of the test signal, which consists 
of sinusoidal components of the frequencies 1, 2, 4, 8, 
16, 32, 64 and 128 kHz, at the sampling freguency 512 
kHz showed (see Fig. 2, a) and b)) that the mentioned 
methods both resulted the same noise level and highly 
correlated noise for every identified sinusoidal 
component (its parameters: amplitude, phase, real and 
imaginary parts). Thus, the considered approaches are 
equivalent in this aspect.  

The synchronous detection based approach needs 
less computations than the DFT based approach, even 
more: it enables to obtain much more easily the desired 
results at every sample and (applying the described here 
averaging methods) also the averaged results with lower 
noise level (see the results in Fig. 2, c) and d)). 
However, at present we have to prefer the DFT based 
approach.  

The SD based approach suits well for a system with 
M simultaneously working SISO (single input – single 
output) tissue impedance measurement channels and 
eliminates interference between these channels. It suits 
also for alternating (cyclic) measurement of responses 
to the excitations from M inputs at every output. But a 

sufficiently good detailed solution for a MIMO 
measurement system, i.e. for simultaneous measurement 
of all these M responses at every measurement 
electrode, has to be found yet.  

 
Conclusions 
 

The obtained results allow us to state that the 
considered DFT based approach seems to be good 
enough for signal processing in the DMBA of the 
realised hardware solution (see Fig. 1, more details in 
[4]) where computations are performed in a DSP.  

If we succeed in finding efficient algorithmic and 
(expectedly) ASIC solutions for the SD approach based 
signal-processing channel(s) of a MIMO system then 
the MIMO system becomes computationally much 
simpler and it can be realised without using any DSP.  
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a) Results of synchronous detection (SD) applying (3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) SD results averaged over 32, =eavN  last values 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) Results of discrete Fourier analysis (DFT) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d) SD results averaged applying (4) with 95.0=α  

 
Figure 2. Computed offset and amplitudes of sinusoidal componets of the test signal, which consists of components of 
the frequencies 1, 2, 4, 8, 16, 32, 64 and 128 kHz with corresponding amplitudes 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 and 1.8. 
The offset of the constant value 1 and Gaussian white noise were added to the test signal. The used sampling frequency 
was 512 kHz. The results are presented for 512 samples of the second measurement cycle of the length 

msec11 00 == fT  (thus, the plots c) and d) demonstrate transients of used different averaging processes).  
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