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Abstract: Nowadays, quantitative MRI 
measurements play a major role in clinical decisions, 
as when monitoring subtle variations in some 
diseases such as MS. Many efforts have been done 
during the last years in the field of MRI 
segmentation in order to obtain robust and accurate 
methods to measure tissue properties. MR images 
are affected with some characteristic artifacts like 
non-uniformity and partial volume effect (PVE). 
Many methods have been developed which try to 
solve the PVE that happens when more than one 
tissue is present in a voxel. All these methods try to 
model the PV voxels (also called mixels) using either 
uniform or Gaussian distributions. Our objective is 
to present a different approach based on a modified 
histogram (PGWH) for dealing with mixels in order 
to obtain an accurate segmentation. Quantitative 
validation of the method has been done with 
simulated data and qualitative results on real data 
are provided. 
 
Introduction 
 
Since data acquired on MR scanners is affected with a 
variety of image artefacts, proper image pre-processing 
is needed to asses the quality of data which is necessary 
to assure an accurate diagnostic. Concretely, MRI brain 
tissue volumes is a valuable measure for clinical 
purposes and many efforts has been employed in the last 
years to measure them properly [1]. 
 
Brain tissue classification is a complex task because 
many reasons such us similar intensities in brain and 
non-brain pixels, low special resolution, noise, etc. A 
large number of methods have been developed to solve 
the brain extraction problem. Some of them use 
thresholding and morphological operators to separate 
brain to non-brain tissues while others use deformable 
meshes or brain templates to incorporate a priori 
information. There is a good comparison of these 
methods in [2].     
 
Even when outer tissues have been extracted MRI 
images are affected with MRI inhomogeneities, random 
noise and partial volume. 
 
The problem of partial volume has been also addressed, 
especially on those statistical methods that try to find 
the parameters of tissues distribution using any kind of  

 
EM algorithm to estimate them. Basically, these 
methods use additional classes for modelling partial 
volume voxels, as well called mixels [8,9]. 
  
In this paper we address the problem of partial volume 
using a non parametric approach. We propose a new 
kind of histogram similar to the approach of Nagel and 
Rosenfeld [10] which minimizes partial volume voxels 
contribution making easier to classify MRI data. We 
describe some experiments with both real and simulated 
data to demonstrate its excellent behaviour.       
 
Material and Methods 
 
Most of PV methods try to model partial volume using 
some kind of basis function. Santago and Cage use an 
uniform distribution while Ruan et al [13] and others 
use Gaussian distributions. We think that PV voxels 
can´t have a known model function as they are an 
unexpected combination of Gaussian distributed tissues 
wich is dependent to the concret image geometry and 
should be different from one image to another. 
 
Instead of modeling PV voxels we propose to erase 
them in order to estimate properly the mean value of the 
different tissues. 
  
A MR brain image is commonly modelled as follow: 
 
 yi = µjβi + ni           j∈[1,k]      i∈[0,M]                       (1)                       
 
Where yi is the measured pixel at location i,  µj is the 
mean of jth tissue at which this pixel belongs, βi is the 
multiplicative and positive field at the same location and 
ni is a gaussian distributed noise with zero mean and 
given variance. 
 
This is pure tissue model that does not take into account 
the partial volume effect. This model assumes that if 
there is no inhomogeneity noise all tissues share the 
same variance (noise variance). However, this not true, 
because the partial volume and tissue heterogeneity. we 
can reformulate the model as follow to take into account 
PVE: 
 
yi = Φ(µ,αi)βi + ni                                                        (2) 
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Where Φ (µ,αi) is a linear mixing function that gives us 
the intensity in one pixel at location i as the combination 
of the different tissue proportions.  
 
If we restrict the possible tissue combination to two 
classes as proposed in [13] then we have the next 
expression for the mixing function: 
 

Φ (µ,αi) = αijµj + (1-αjj)µj+1         1
1j

=∑
=

k

jα             (4) 

 
Where αi is the proportion of tissue i in a voxel and (1-
αi) is the proportion of tissue i+1.Other tissues than i 
and i+1 has zero proportion of tissue.    CSF y WM is 
despreciable. 
 
 
If eliminate bias noise using available methods [x] our 
resulting model is: 
  
yi = Φ(µ,αi) + ni /βi                                                      (5) 
 
where random noise is now bias related and is not 
longer gaussian. 
 
If we apply a low pass filter to the bias corrected image 
which does not affect tissue means then we obtain the 
next model: 
 
yi = Φ*(µ,αi) + ni

*                                                        (6) 
 
where n* is gaussian due to central limit theorem and 
Φ* is a modified mixing function due to filtering.  
 
If no random noise were present at image tissue content 
of each voxel can be obtained from the tissue means 
using the follow expression: 
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Then the problem resides on finding the means of the 
tissues. 
 
Many authors model the image histogram using mixture 
of Gaussians using either uniform or Gaussian 
distributions for PV voxels [11-13]. However, the real 
distribution of these mixels can not be known in a 
general framework because this is an unexpected 
mixing function which can vary highly from one image 
to another and has high relation with image noise and 
level of the PV. Instead of modeling the PV voxels, we 
will consider them as outliers of the pure tissue 
distribution. As the PV voxels mainly appear on the 

interfaces between tissues (edges), a simple way to 
avoid them could be to delete all the voxels that have a 
high gradient using a cost function-based thresholding 
as done in [xx]. However, this approach introduces a 
truncation in data which is not desirable making the 
mean estimation hard to reach.     
 
We propose to solve this problem to use a parametric 
histogram which is almost insensitive to the 
contribution of PV voxels.  
 
Parametric Gradient Weighted Histogram (PGWH) 
 
Let be y an image of M pixels and L grey levels and y* is 
the image resulting from the application of an average 
lowpass filter. 
 

Hy=y               * ⊗                                              (8) 
 
We define the Parametric Gradient Weighted Histogram 
(GWH) of the image y as follows: 
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The histogram is normalized to use it as a pdf:   
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Where∇ is the local gradient of image y* in a 
neighborhood window of radius 1 (3x3 size) centered at 
position i. δ is the Dirac-delta function. H integrates to 
1, which is important for its interpretation as a 
probability density function (pdf).  
 
The basic idea is that those pixels that have a high 
gradient will have a lower contribution to the histogram 
than pure tissue voxels which are mainly in 
homogeneous regions with a low gradient. The only 
parameter d modulates the degree of cancellation of PV 
voxels. The histogram is calculated over the smoothed 
image because it gives a better estimation of pure tissue 
intensities at homogeneous regions.  
 
The optimum factor d that eliminates PV voxels 
contribution is reached when variance of tissues is 
minimal and can be obtained using a Gauss-Newton 
optimization scheme.  
 
The PGWH not only erases partial volume voxels but 
also reduces noise contribution. This is possible because 
we estimate a better histogram by applying a low-pass 
filter on histogram calculation which reduces random 
noise (but increase partial volume) combined with a PV 
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Figure 2: Class Mean Error and Tissue 
Variance vs d factor. 

cancellation scheme. The only parameter of this 
histogram is the d factor which plays a main role on PV 
cancellation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Adjusting d factor 
 
The factor d regulates the degree of PV cancellation on 
the histogram and has to be set to obtain optimum 
results. To adjust this factor we can remember eq.1 
where we see an idealistic situation with no PV at all. If 
there is no partial volume (and no bias noise) the  
variance of each class should be equal between their 
selves and equal to noise variance. Then, the optimum d 
factor can be seen as the one that minimizes the 
common varianceof all the classes . 

 
 
However, this situation is never reached cause there is 
some amount of anatomical tissue variance but and 
some differences between variances can present. Then 

the optimum d value can be obtained from the value that 
minimizes the variances of the classes. To estimate the 
common this variance we have to classify the tissues 
using a clustering algorithm. We have used the 
Expectation Maximization algorithm (EM) [dempster et 
al,1974] which provides an estimation of class means 
and variances. EM were used over the PGWH. We have 
used an EM reformulation of Jones and McLachlan [12] 
fro working with grouped data assuming that all tissues 
have the same variance.  
 
To measure the error in class mean estimation we define 
the class mean error (CME) as: 
 

∑
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1
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Where eiµ is estimated mean of the class i iµ is the real 
mean.  
 
After mean estimation we will apply Eq. 4 for image 
segmentation. Although a soft segmentation is prefered 
a hard segmentation will be used to easy to comparison 
with other methods. According with Eq. 4 each pixel 
will be assigned to the tissue class that has a higher 
contribution in that pixel.  
 
To measure the segmentation accuracy will use the 
DICE metric also know as kappa index. 
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U
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Where A is the automatic segmentation and M is the 
manual.  
 
Results 
 
To evaluate the proposed method we used a simulated 
test image over different conditions of PV and random 
noise. Our test image consisted on a 256x256 image 
with 3 classes (see Fig.1). Partial volume was simulated 
by applying a low pass-filter with different radios of 
average window. Different amplitude gaussian noise 
was added. In order to know the goodness of the method 
we compared with an existing well known method for 
Partial Volume modelling, the method proposed by 
Ruan et al in [13]. We applied PV window from 0 (no 
PV) to 5(11x11 window) and we added from 0 to 10% 
gaussian noise. In table 1 and in figure 3 we summarize 
the results. 

PV         CME (1)           CME (2) 
0            1.8498              0.0727  
1            1.4258              0.0920  
2            1.4275              0.0845  
3            1.5328              0.1105  
4            2.1232              0.1555  
5            4.2318              0.1992  
Table 1: Comparison between Ruan method(1) and 
PGWH(2). 
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Figure 1: Left-up: Test image with no PV and 
Gaussian noise(10%). Right-up: Normal histogram 
and Average Gradient Weighted Histogram. Left-
down: Test image with PV and Gaussian 
noise(10%). Right-down: Normal histogram and 
Average Gradient Weighted Histogram. 
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Figure 3: CME evolution over different conditions of PV and Gaussian noise with Ruan´s Method and PGWH 
method. 
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Experiments with phantoms 
 
We tested our method over the BrainWeb phantom 
(http://www.bic.mni. mcgill.ca/ brainweb/). All 
experiments were developed using MATLAB 7.0 
(Mathworks Inc). The noiseless volume was firstly 
segmented by software developed in our laboratory to 
obtain the brain mask in which there are only three brain 
tissues(GM,WM and CSF). The tissue classification was 
carried out within this mask using eq 5 using class 
means (45,111,158).  
 
In the next table we show the results. 
 
Real Data   (Koen´s data) 
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Table 2: (GWH) Comparison of 2different classification methods over BrainWeb Phantom. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 CME DICE similarity 
Noise PV Ruan GWH Ruan GWH 
0% 
1% 
3% 
5% 
7% 
9% 

1mm 0.2186    
0.3584    
0.6992    
1.0504    
1.6939    
1.8776 

0.3736    
0.3878    
0.5096    
0.5936    
0.4761    
0.6288 

0.9975    
0.9893    
0.9685    
0.9429    
0.9074    
0.8659 

1.0000    
0.9901    
0.9690    
0.9433    
0.9078    
0.8656 

0% 
1% 
3% 
5% 
7% 
9% 

3mm 3.8583    
0.4756    
1.1770    
2.2239    
2.1298    
2.0754 

0.4444    
0.4673    
0.5420    
0.6229    
0.9445    
1.4116 

0.9441    
0.9860    
0.9600    
0.9294    
0.8910    
0.8502 

1.0000    
0.9876    
0.9607    
0.9305    
0.8915    
0.8495 

0% 
1% 
3% 
5% 
7% 
9% 

5mm 4.7415    
1.0012    
2.7064    
2.9155    
2.7012    
2.6151 

0.9250    
0.9463    
1.0587    
1.1870    
1.7310    
2.2793 

0.9241    
0.9841    
0.9485    
0.9151    
0.8755    
0.8336 

0.9961    
0.9843    
0.9528    
0.9176    
0.8763    
0.8331 

0% 
1% 
3% 
5% 
7% 
9% 

7mm 5.4348    
3.1790    
3.0662    
3.0228    
3.2744    
3.7677 

1.1804    
1.1649    
1.2780    
1.9144    
2.0060    
3.0228 

0.9118    
0.9693    
0.9403    
0.9043    
0.8643    
0.8197 

0.9957    
0.9822    
0.9464    
0.9082    
0.8658    
0.8197 

0% 
1% 
3% 
5% 
7% 
9% 

9mm 5.3770    
5.4840    
5.3045    
5.0459    
4.6060    
6.0482 

2.4824    
2.6180    
2.9288    
3.3792    
3.9609    
4.3357 

0.9544    
0.9449    
0.9210    
0.8888    
0.8505    
0.8007 

0.9745    
0.9692    
0.9390    
0.8981    
0.8538    
0.8076 

Average  2.9377 1.5267 0.8577 0.9272 


