
The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 AN EMBEDDED SYSTEM FOR THE ELECTROCARDIOGRAM
RECOGNITION

Christos Pavlatos*, Alexandros Dimopoulos* and G. Papakonstantinou*

* National Technical University of Athens

Dept. of Electrical and Computer Engineering
Zografou 15773, Athens

Greece

{pavlatos, alexdem, papakon}@cslab.ntua.gr

Abstract: In this paper we present an embedded
system for the efficient recognition of the
Electrocardiogram (ECG). The aforementioned
system is generated by a proposed platform that
automatically maps applications on embedded
systems using reconfigurable hardware FPGA (Field
Programmable Gate Arrays). The ECG recognition
system attains a speed up factor of approximately
x20 compared to a fully software-based approach.
The platform exploits both the procedural and
declarative formalism increasing by this way its
expressive power. The underlying model used for the
implementation is that of Attribute Grammars
(AGs).

Introduction

The Electrocardiogram (ECG) is routinely used in
clinical practice. Due to the large number of ECGs
analyzed in daily basis, it is worthwhile to automate and
accelerate the process to the maximum extent possible.
Previous attempts have been made using decision-
theoretic methods, syntactic methods and hybrid
methods.

The great evolution in technology has significantly
modified the methods of designing computing systems,
leading gradually in more high level formalisms. The
combinational use of procedural and declarative models
would increase the expressive power of these
formalisms for a considerable number of applications.

 This formalism can be used for pattern recognition
applications and more specifically for the ECG
recognition. The automatic mapping of applications
expressed in the above formalism on special purpose
embedded systems may substantially improve the
execution time. Attribute Grammars (AGs) have
extensively been utilized for the hybrid approach to
pattern recognition. The task of recognition is
essentially reduced to that of parsing a linguistic
representation of the patterns to be recognized. Due to
their descriptive power AGs may be selected [1], [2]
and applied as the model for the formulation of a pattern
grammar for ECGs.

Attribute grammars (AGs) were introduced by
Knuth [3] in 1968. The addition of attributes and
semantic rules to Context free grammars (CFG)

augmented their expressional capabilities, making them
by this way a really useful tool for a considerable
number of applications. AGs have been extensively
utilized in Artificial Intelligence applications [4], [5],
[6], structural pattern recognition [7], [8], compiler
construction [9], and even text editing [10]. However,
the additional complexity imposed by the added
characteristics, along with the need for fast CF parsing
by special applications, dictates the parallization of the
whole procedure (parsing and attribute evaluation) as an
attractive alternative to classical solutions.

Conventional approaches [11], [12] in the
evaluation of AGs are based on the construction of the
parse tree that is after traversed one or more times,
depending on the form of the grammar, in order to
evaluate the attributes. The division of the whole
procedure into two separate tasks (parsing and attribute
evaluation) and the execution of these, one after the
other make these approaches inefficient, although the
second task (attribute evaluation) may be executed in
parallel. However in [13], [14] where the parsing is
executed in parallel with the attribute evaluation, the
parsing is sequential while these evaluators may only be
applied to a restricted form (S-Attributed) of AGs [12],
[13].

In [15] we proposed a parallel algorithm that
evaluates attributes simultaneously with the parallel
parsing. The architecture consists of n+2 processing
elements, where n is the length of the input string. One
element is used for the control of the whole process, one
element is used for the attribute evaluation, and n
elements are used for the parallel parsing. The algorithm
we proposed is based on the parallel version of Earley’s
[20] algorithm that was introduced by Y. Chiang & K.
Fu [16]. The parallel algorithm has time complexity
O(n) and it approximately needs the same time to both
parse the input string and evaluate the attributes
compared to time needed to solely parse the input string.
This fact makes our approach essentially more efficient
compared to the conventional approaches where the
attribute evaluation process follows that of the parsing
phase or the approaches where although the semantics
evaluation phase and the parsing are executed in
concurrently, the parser is a sequential one. In addition,
since parsing and attribute evaluation are executed in
parallel, we have the ability, by checking some rules

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

that we can pose, to early detect a syntax error, avoiding
the continuation of the parsing or pruning the parse tree,
succeeding by this way to semantically drive the parsing
process [17].

In [8] a hardware implementation of a shape
grammar was proposed using [16] as well. Our
architecture [15] overtakes [8] due to aforementioned
improvements on [15]. Additionally, in [8] there were
two main limitations. The first is that the attributes are
standard and only for the proposed attribute grammar
and the second is that the scale of the hardware is
problem and input string length depended.

In this paper i) a platform is proposed for the
automatic mapping of applications on embedded
systems using reconfigurable hardware FPGA (Field
Programmable Gate Arrays) , ii) a parallel algorithm
that evaluates the semantics of a grammar
simultaneously with the procedure of syntactic analysis
is presented that is an improved version of the one we
presented in [15] due to the fact that the system also
accept input strings. Our approach is based on the
fastest parsing algorithm (Earley’s parallel parsing
algorithm [16]) extended to handle attribute evaluation
computations for L-Attributed grammars. The parallel
algorithm has time complexity O(n) using n+2
processing elements where n is the length of the input
string (representing the ECG), and iii) we have used the
platform for the implementation of an embedded system
for the efficient normal ECG recognition.

The rest of the paper is organized as follows.
Second section analyses the necessary theoretical
background; third section presents the relation of ECG
and AGs; next materials and methods are stated. In the
last two sections we discuss the performance of the
proposed system and outline directions for future work.

Introduction to Attribute Grammars

An AG [3] is based upon a Context Free Grammar

(CFG). A CFG is a quadruple G = (N, T, R, S), where N
is the set of non-terminal symbols, T is the set of
terminal symbols, R is the set of grammar rules (a

subset of N x(N � T)* written in the form A� ���,
where A � N and � � (N � T)*) and S (S � N) is
the start symbol (the root of the grammar). We use
capital letters A, B, C… to denote non terminal
symbols, lowercases a, b, c… to denote terminal
symbols and Greek lowercases �, �, �... for (N � T)*
strings, � is the null string and V = N � T is called

vocabulary.A *
� �� a means that a can derive from A

after the application of one or more rules.

Let S *
� �� �, (���*) be a derivation in G. The

corresponding derivation (parsing) tree is an ordered
tree with root S, leaves the terminal symbols in �, and
nodes the rules that are used for the derivation process.
The process of analyzing a string for syntactic
correctness is known as parsing. A parser is an
algorithm that decides whether or not a string a1a2a3…an
can be generated from a grammar G and simultaneously
constructs the derivation (or parse) tree.

An AG is a quadruple AG = {G, A, SR, d} where G
is a CFG, A = �A(X) where A(X) is a finite set of
attributes associated with each symbol X � V. Each
attribute represents a specific context-sensitive property
of the corresponding symbol. The notation X.a is used
to indicate that attribute a is an element of A(X). A(X)
is partitioned into two disjoint sets; the set of
synthesized attributes AS(X) and the set of inherited
attributes AI(X). Synthesized attributes X.s are those
whose values are defined in terms of attributes at
descendant nodes of node X of the corresponding
semantic tree. Inherited attributes X.i are those whose
values are defined in terms of attributes at the parent
and (possibly) the sibling nodes of node X of the
corresponding semantic tree. The start symbol does not
have inherited attributes. Each of the productions

Pp� (
nXXXp ...10: �) of the CFG is augmented by a

set of semantic rules SR(p) that define attributes in
terms of other attributes of terminals and on terminals
appearing in the same production. The way attributes
will be evaluated depends both on their dependencies to
other attributes in the tree and also on the way the tree is
traversed. Finally d is a function that gives for each
attribute a its domain d (a).

An l-attributed grammar is an attribute grammar
where any semantic rule of any production

nXXXp ...10: � satisfies the following conditions:

Inherited attribute values of Xi can be determined
using inherited attributes of X0 and synthesized attribute
values of X1… Xi-1

Synthesized attribute values of X0 can be
determined using inherited attribute values of X0 and
synthesized values of X1… Xn

Attribute Grammars and ECG

In Syntactic Pattern Recognition, the task of
recognition is essentially reduced to that of parsing a
linguistic representation of the patterns to be recognized
with a parser that utilizes a certain grammar, called
“pattern grammar” [7]. The pattern grammar describes
the patterns to be recognized in a formal way, and the
formulation and parsing of the grammar are always the
crucial subproblems in a pattern recognition application
that is to be tackled by the syntactic approach. In the
case of ECGs, where we have a large number of
different morphologies of the patterns, where added
morphologies can be found due to the noise, and where
measurements of the various parameters have to be
performed, powerful grammars capable of describing
syntax as well as semantics are needed as a model for
the formulation of a pattern grammar. Due to their
descriptive power attributes grammars are usually [1],
[2] selected and used as the model for the formulation of
a pattern grammar for ECGs. We used the automated
synthesis tool to generate a hardware parser for the
syntactic part of the attribute grammar presented in [1].

In [1] the alphabet of symbols T ={�+, �-, �, �}
has been adopted for encoding the ECG waveforms,
where �+ denotes positives peaks, �- negative peaks, �
straight line segments and � parabolic segment. Thus an

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

ECG waveform is linguistically represented as a sting of
symbols from the alphabet T. Each symbol is associated
with the values of the corresponding attributes.
Therefore a string of the following form may be a
linguistic representation of an ECG waveform.

� �- �+ � �- � �- �+ � �- �+
� �- � �- �+ �

Using the grammar [1], consisting of 34 syntactic
rules with maximum length 7 symbols (terminals or
non-terminals), strings of the abovementioned form can
be parsed. By the simultaneous evaluation of the
attributes the ECG may be recognized.

Materials and Methods

Our main intension is to accelerate the performance
of applications which are based on syntactic pattern
recognition. Since ECG waveform recognition may
easily be transformed into an equivalent AG evaluation
problem, the underlying model of implementing an
embedded system for the aforementioned applications is
that of an AG evaluator.

The method used is the separation of the parsing
from the semantics evaluation procedure. The parsing is
carried out by hardware (FPGA) and the semantic
evaluation is carried out by a conventional RISC
microprocessor. The cooperation of the FPGA with the
RISC microprocessor forms an embedded system for
the recognition of the normal ECG.

An additional goal is to automate the procedure of
designing so as to present a platform that, for a given
AG, automatically generates the proper code to build
the embedded system. As far as the parsing is
concerned, we embedded the reconfigurable hardware
parsers presented in [21] in the parallel architecture
presented in [15]. As far as the attribute evaluation is
concerned, we used an improved version of the parallel
algorithm we presented in [15]. All the above
components were merged in a platform, for the
automatic mapping of applications on embedded
systems, which reconfigures the components according
to the input AG. The platform outputs the proper
Verilog HDL [18] source code to be downloaded to the
FPGA as well as the proper assembly code to be
downloaded to the RISC microprocessor.

Figure 1: Overview of our approach

The Risc microprocessor handles the semantic
evaluation while the parallel algorithm that implements
the parsing is handled by a Xilinx FPGA board [19].
The board interfaces with the microprocessor using
hardware/software co-design methods (see Figure 1).
All data are stored in a Dual Port RAM, shared by both
components. Finally this platform has been used for the

implementation of an embedded system dedicated to the
ECG recognition.

The Proposed Architecture

The procedure of parsing may be reduced to the

procedure of filling a two dimension table (parsing
table). Chiang & Fu [5] proved that the construction of
the parsing table can be parallelized with respect to the
length of the input string n by computing at step k the
cells pt(i, j) for which 1��� kij .Only the elements on
or above the diagonal are used. In [15] a parallel
architecture (see Figure 2) has been presented that uses
n+2 elements to compute the parse table in O(n) time
where n is the input string length. Every processing
element is computing one cell pt(i, j) in each execution
time (te1, te2, ... ten) and the next execution time is used
again to compute the cell that belongs to the same
column and is one row higher pt(i-1, j). In addition one
processing element is required to control the whole
process and one more to handle the attribute evaluation
process as shown in Figure 2. The n elements that are
used for the parallel parsing are following the design
presented in [21].

pt(0,1)

pt(1,2)

pt(2,3)

pt(1,1-3)

pt(0,1-3)pt(0,1-2)

te1 te2 te3

Control Bus

P2 P3 P4

tc1

pt(0,2)

tc2

tc1

tc1

tc2

tc3

pt(0,3) pt(0,4)

pt(1,4)pt(1,3)

pt(2,4)

pt(3,4)

pt(2,3)

pt(1,2)

Control
unit

pt(0,1)

P1

Attribute
Evaluator

�

�

Figure 2: The parallel architecture for the attribute
evaluation

After the end of each execution step k, the
computation of one parsing processing element
terminates. At the next execution step this processing
element should transmit (communication step: tc1, tc2, ...
tcn) the cells that it has computed, to the processing
element that handles the attribute evaluation. The cells
that are transferred contain the rules that can possibly
generate the input string so far. The attributes of these
rules are then evaluated, in the next execution step, by
the attribute evaluator while the processing elements are
calculating the cells of the current step. Each processing
element repeatedly calculates a cell, checks if it should
send some cells and then if it should receive any.

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

Finally the processing element sends its cells to the
attribute evaluator. During the attribute evaluation
process it is crucial to traverse the elements of the parse
table in such a way that guaranties the correct
computation of the attributes in one pass. An efficient
way to achieve this goal that is presented in [15] is also
adapted in the presented effort.

Performance Evaluation

In Figure 3 the efficiency (in clock cycles) of seven
case studies are shown for various input string lengths.
The proposed approach gives better results, attaining a
speed up factor of approximately x20 compared to a
fully software-based approach. The software
implementation uses a conventional Risc
microprocessor.

 Provided that the technology used for the hardware
implementation is the same with the one used for the
microprocessor we can safely claim that the clock
frequency for both implementations may be the same.
Consequently the performance in all implementations is
measured in clock cycles. Measurements have been
taken for various implementations and number of input
string length.

The performance in all implementations is
measured in clock cycles. In Figure 3 seven
measurements are presented, the clock cycles of the
software parser, of the software parser and the attribute
evaluator, of a sequential hardware parser, of a
sequential hardware parser and the attribute, of the
parallel hardware, of the parallel hardware parser and
the attribute and finally of our approach that is parallel
hardware parser and concurrently attribute evaluator.

0 20000 40000 60000 80000 100000
clock cycles

6

8

10

in
pu

t s
tr

in
g

le
ng

th

Software Software+Attr.Eval.
Sequential Hardware Sequential Hardware+Attr.Eval.
Parallel Hardware Parallel Hardware+Attr.Eval.
Our approach

Figure 3: Performance evaluation

Apparently, the number of clock cycles required to
firstly construct the parse tree and then by using it to
evaluate the attributes –regardless the implementation,
software or hardware, sequential or parallel- are greater
than the clock cycles required by our approach.
Additionally, the fact that our approach appears to be
slower compared to time required just to parse the input
string by a factor that is a small fraction of the whole
parsing process is really an encouraging event.

Conclusion

This paper presents an embedded system for the

efficient recognition of the ECG. The embedded system
is based on a parallel parsing algorithm that
simultaneously evaluate attributes, implemented using a
proposed design platform.

This work is a part of a project1 for developing a
platform (based on AGs) in order to automatically
generate special purpose embedded systems. The
application area will be that of Artificial Intelligence
(AI), of Syntactic Pattern Recognition for
Electrocardiogram (ECG) analysis and of Signal
Processing using software hardware co-design
techniques. Alternatively, the whole implementation
both microprocessor and parser may be mapped on a
single FPGA board.

References

[1] TRAHANIAS P., SKORDALAKIS E. (1990):

‘Syntactic Pattern Recognition of the ECG’, IEEE
Transactions on PAMI, 12

[2] PAPAKONSTANTINOU G. (1986): ‘An Attribute
Grammar for QRS detection’, Pattern recognition,
19, pp.297-303

[3] KNUTH D. (1971): ‘Semantics of context free
languages’, Math. Syst.Theory, 2, pp.127-145

[4] PAPAKONSTANTINOU G., KONTOS J. (1986)
‘Knowledge Representation with Attribute
Grammars’, The Computer Journal, 29

[5] PAPAKONSTANTINOU G., MORAITIS C.and
PANAYIOTOPOULOS T.(1986) :‘An attribute
grammar interpreter as a knowledge engineering
tool’, Applied Informatics, 9, pp. 382-388

[6] PANAGOPOULOS I., PAVLATOS C. and
PAPAKONSTANTINOU G. (2004) :‘An
Embedded System for Artificial Intelligence
Applications’, International Journal of
Computational Intelligence

[7] FU K. (1982): ‘Syntactic Pattern recognition and
Applications’, PRENTICE-HALL

[8] CHEN H. AND CHEN X. (1993):‘Shape
recognition using VLSI Architecture’, The
International Journal of Pattern Recognition and
Artificial Intelligence

[9] AHO A., SETHI R. AND ULLMAN J. (1986):
‘Compilers – Principles, Techniques and Tools.’
Reading, MA:ADDISON-WESLEY,, pp. 293-296

[10] DEMERS A., REPS T., AND TEITELBAUM T.
(1981):‘Incremental evaluation for attribute
grammars with application to syntax-directed
editors’, in Conf. Rec. 8th Annu. ACM symp.
Principles Programming Languages, (1981),
pp.415-418

[11] BOEHM H.J. AND ZWAENEPOEL W.: ‘Parallel
Attribute Grammar Evaluation’, In. R. Popescu-
Zeletin, G. Le Lam, and K.H. Kim, editors,

1 This work is co - funded by the European Social Fund and
particularly the Program “Pened 2003”.

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

Proceedings of the 7th International Conference on
Distributed Systems, Berlin,Germany,1987,
pp.347-354

[12] KLAIBER A. and GOKHALE M (1992): ‘Parallel
Evaluation of Attribute Grammars’ , IEEE Trans.
on Par. and Distr. Sys., 3, pp.206-220

[13] PAVLATOS C., KOULOURIS A. and
PAPAKONSTANTINOU G.(2003):‘Hardware
Implementation of Syntactic Pattern Recognition
Algorithms’, IASTED International Conference on
Signal Processing and Pattern Analysis (SPPRA),
pp. 360-365

[14] TOKUDA T. and WATANABE Y. (1994) :‘An
attribute evaluation of context-free languages’,
Information Processing Letters, 57, pp. 91-98

[15] PAVLATOS C., DIMOPOULOS A. and
PAPAKONSTANTINOU G.: (2005) ‘An
Intelligent Embedded System for Control
Applications’, Workshop on Modeling and Control
of Complex Systems, Cyprus ,2005

[16] CHIANG Y. and FU K. (1984) : ‘Parallel parsing
algorithms and VLSI implementation for syntactic
pattern recognition’, IEEE Trans. Pattern Anal.
and Mach. Intell. PAMI,7

[17] SIDERI M., EFREMIDIS S. and
PAPAKONSTANTINOU G. (1994):
‘Semantically driven Parsing of CFG’ The
Computer Journal, 32, pp91-98

[18] PALNITKAR, S. : ‘Verilog HDL, A guide to
digital design and synthesis’, PRENTICE HALL,
Second Edition

[19] XILINX, Internet site address:
http://www.xilinx.com

[20] EARLEY J. (1970):‘An efficient context–free
parsing algorithm’, Com. of ACM, 13, pp. 94-102

[21] PAVLATOS C., PANAGOPOULOS I. and
PAPAKONSTANTINOU G: ‘A programmable
Pipelined Coprocessor for Parsing Applications’
Workshop on Application Specific Processors
(WASP) CODES, Stockholm, 2004

