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Abstract: Electrical activity of the stomach 
pacemaker structure, the network of interstitial cells 
of Cajal, can be noninvasively recorded as an 
electrogastrogram (EGG). Power of the EGG signal 
is, however, much weaker in comparison with the 
other biological signals (e.g. ECG, respiratory 
signal). EGG signal is therefore usually 
contaminated by other biological signals and 
artifacts, which are difficult to separate from the 
EGG signal by conventional filtering methods. In the 
present study, independent component analysis 
(ICA), as a method for blind source separation, is 
used for artifact removal and biological signal 
separation. EGG signals were recorded using 4-
channel custom made recording device controlled by 
ADµC812 8-bit microcontroller and connected to a 
notebook computer. All signals were measured 
relatively to a single reference electrode. The present 
study shows that ICA application on a set of EGG 
signals approved potential of this method for artifact 
removal and signal separation. The algorithm is 
useful for separation of different types of signals 
(motion artifact, oscillating transients) from the 
original EGG recordings. We can conclude that ICA 
improves further analysis of separated signals and 
their biological interpretation.  It could potentially 
improve also analysis of relations between signals 
originating from different biological structures. 
 
Introduction 
 

Electrical activity of the stomach pacemaker 
structure, the network of interstitial cells of Cajal (ICC), 
can be noninvasively recorded as an electrogastrogram 
(EGG) [1,2]. Oscillations of the network of ICC, called 
slow waves, spread on the neighboring smooth muscle 
cells and are necessary for their contractions and 
coordinated motility of the stomach wall. EGG signal 
therefore represents useful tool for noninvasive 
functional evaluation of the ICC network, which proper 
and coordinated activity is necessary (but not sufficient) 
for proper motility pattern in the stomach [2].  

Power of the EGG signal is, however, much weaker 
in comparison with the other biological signals (e.g. 
ECG, respiratory signal). EGG signal is therefore 
usually contaminated by other biological signals and 

artifacts, which are difficult to separate from the EGG 
signal by conventional filtering methods. 

Recently, a method for blind source separation 
called independent component analysis (ICA) was 
introduced [3]. ICA extracts source signals (independent 
components) contributing to a mixture of signals 
(recorded signals) without any knowledge about their 
properties. This extraction is based on the assumption 
that component signals are statistically independent, 
meaning that knowing the properties of one component 
signal provides no information about the properties of 
the other signals in the mixture. The major constraint of 
ICA is that it requires at least as many mixture signals 
as there are component signals in the mixture. Recently, 
ICA has been successfully applied for analysis of 
biomedical signals [4]. In the present study we used this 
method to extract source signals from a set of EGG 
signals recorded by a custom made EGG device. 
 
Materials and Methods 
 

Multichannel measurement of EGG signals with 
simultaneous recording of one electrocardiogram for 
heart rhythm monitoring was implemented in the 
ProGastro 3 device (Figure 1) [5]. It consists of a 
measuring box with signal amplifiers and a 
microcomputer-controlled measuring module. The box 
is connected to a serial port of a notebook computer. In 
human subjects, signals are recorded by a set of solid 
gel disposable electrodes (HP 1394). EGG amplifier 
with 4 programmable channels, automatic offset 
compensation, programmable gain 2500 - 20000 and 
selectable frequency range .015 - .5 Hz or .015 - 3.4 Hz 
is controlled by ADµC812 8-bit microcontroller. All 
signals are measured relatively to a single reference 
electrode, active neutralization electrode ensures 
common-mode signal rejection ratio higher than 90 dB. 

Application software developed in MS Visual C++ 
and MatLab, is running under Windows 98/2000/XP 
and allows full control of the measuring box and long 
term real-time EGG monitoring and recording. 
Subsequent EGG signal processing includes digital 
filtering, baseline corrections, interactive amplitude and 
time interval measurements followed by time-frequency 
and independent component analysis. 
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 Figure 1: ProGastro 3 device used for EGG 
measurement 

 
Measured data in EGG signals can be modeled as a 

linear combination of source signals that are non-
gaussian and mutually statistically independent by the 
following equation: 

 
sAx ⋅=  

 
where x = (x1, x2,...,xn)T is the vector of observed 

variables, s = (s1, s2,...,sn)T is a vector of variables 
called independent components or source signals, and A 
is a mixing matrix. This equation can be inversed and 
expressed as follows 

 
xWs ⋅=  

 
where the weighting matrix W equals the inversed 

mixing matrix A. One independent component can be 
expressed by the following equation: 

 

∑ ⋅=⋅=
j jj xwxws T  

 
Several algorithms were proposed for computing the 

independent components and the matrices A and W 
[6,7]. In the present study, independent components (IC) 
were estimated using FastICA algorithm implemented 
in MATLAB (available on the web at 
http://www.cis.hut.fi/projects/ica/fastica/). This software 
is based on a fixed-point iteration scheme for 
maximizing non-gaussianity of wT⋅x introduced by 
Hyvärinen and colleagues [8]. In this algorithm, 
negentropy (or differential entropy) is a parameter 
quantifying the amount of mutual information shared by 
the independent components. Negentropy (J) of a 
random variable s (or of independent components) is the 
difference between the entropy of a gaussian random 
variable (H(sG)) and entropy of the random variable s 
(H(s)): 

 
( ) ( ) ( )sHsHsJ G −=  

 

A gaussian random variable has the largest entropy 
among all random variables of equal variance. Thus, 
negentropy J(s) is always non-negative and zero if and 
only if s is gaussian. Maximizing negentropy is 
therefore equivalent to maximizing nongausianity in a 
random variable, thus minimizing mutual information. 
In FastICA algorithm, negentropy is estimated by 

 
( ) ( ){ } ( ){ }[ ]GsGEsGEsJ −∝  

 
where s is a random variable assumed to be of zero 

mean and unit variance, sG
  is a gaussian random 

variable of zero mean and unit variance and G is a 
nonquadratic function [8]. Detailed information on this 
algorithm can be found in [8,9] 

For frequency transformation, non-stationary 
method (Wigner distribution) was used in order to 
obtain spectro-temporal representation of the EGG 
signal [10,11]. Cross-terms in Wigner distribution were 
eliminated by smoothing (Choi-Williams filtering was 
used in our study [12]). 
 
Results 
 

In the present study, usefulness of ICA was 
examined for removing of sudden discontinuities in the 
EGG signal (Figure 2) and temporal higher frequency 
high amplitude signal (Figure 4) in time course of EGG 
recording.  

In Figure 2, high amplitude low frequency artifact at 
the very beginning of the recording time period is 
present in EGG signals. ICA separated 3 artifact 
components (IC 1 – IC 3) and one relevant component 
(IC 4), which represents gastric slow waves. Expected 
dominant frequency content of gastric signal (IC 4) was 
proved to be 3 cycles per minute (cpm) by nonstationary 
spectrotemporal transform – Wigner distribution with 
Choi-Williams filtering of cross-terms (Figure 3). 

The next example (Figure 4) shows signals 
contaminated by an artifact at the very beginning of the 
recorded time period and pronounced in higher 
frequency signals occurring between the 5th and 6th 
minute of the recording time period. ICA application on 
this set of EGG signals approved potential of this 
method for artifact removal and signal separation. 
Artifact was separated as a single independent 
component IC 2 and temporal higher frequency signal 
occurring in the 6th minute of the EGG recording as 
component IC 4. The first independent component IC 1 
represents the basic signal originated in stomach with a 
dominant frequency of 3 cpm. 
 
Discussion 
 

Recently, ICA was successfully tested for artifacts 
removal from EGG signals using the maximal 
likelihood algorithm [9]. In the present study, usefulness 
of ICA for artifact removal and signal separation for 
EGG recordings was tested using fixed-point algorithm 
proposed by Hyvarinen [8]. 
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Figure 3: Spectrotemporal representation of the 
independent component IC 4 
 

ICA is based on the assumption that separated 
signals are non-gaussian, mutually independent and that 
the recorded signals are a linear sum of the source 
signals. It was argued that interesting signals in nature 
often have non-gaussian distributions (e.g. [13]) and 
signals with gaussian statistical distribution are thought 
to be a mixture of non-gaussian ones. It is therefore 
reasonable to suppose that signals of interest (biological 
signals and artifacts that should be separated from them) 
are non-gaussian.  

The major constraint of ICA is that it requires at 
least as many recorded signals as there are source 
signals in the mixture. EGG recordings contain 4 
different signals available for analysis. It is reasonable 
to suppose that EGG signals are formed by more than 
only 4 different sources. Iterative optimization is used in 
fastICA algorithm generated components with a 
minimum of mutual information. Thus, algorithm 
generates signals that are not strictly mutually 
independent but as independent as possible [7]. 
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Figure 4: Recorded EGG signals contaminated with temporal higher frequency high amplitude signal and independent 
components IC1 – IC4 as a result of ICA 

Figure 2: Recorded EGG signals with a sudden discontinuity and independent components IC1 – IC4 as a result of ICA
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 Independent components could be therefore signals that 
are the most independent signals comprising the 
recorded ones. 

Common problem of EGG analysis is that there is no 
direct connection between EGG signal parameter and 
occurrence of contractions of the stomach. ICA could 
potentially bring a promising tool for separating signal 
that could indicate contraction incidence from the signal 
mixture. We can expect that such a signal is very low in 
amplitude, has overlapping spectra with other signals 
and is therefore very difficult for detection by 
conventional signal analysis methods. ICA is a method 
that could separate such signals and enables further 
analysis and detection of hidden signals in the mixed 
EGG recordings. 
 
Conclusions 
 

We can conclude that usefulness of ICA application 
on EGG signals was approved. The algorithm, used in 
the study, is suitable for artifacts elimination from the 
EGG signals. ICA, thus, improves further analysis of 
separated signals and their biological interpretation. It 
could potentially improve also analysis of relations 
between signals originating from different biological 
structures. 
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