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∗ Gerstner Laboratory, Department of Cybernetics,
Czech Technical University, Technická 2,
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Jamova 39, 1000 Ljubljana, Slovenia

and
Nova Gorica Polytechnic, Vipavska 13, 5000 Nova Gorica, Slovenia

zelezny@fel.cvut.cz, tolar003@umn.edu, nada.lavrac@ijs.si, step@labe.felk.cvut.cz

Abstract: We propose a methodology for
predictive classification from gene expression
data, able to combine the robustness of high-
dimensional statistical classification methods
with the comprehensibility and interpretabil-
ity of simple logic-based models. We first con-
struct a robust classifier combining contribu-
tions of a large number of gene expression val-
ues, and then search for compact summariza-
tions of subgroups among genes associated in
the classifier with a given class. The subgroups
are described by means of relational logic fea-
tures extracted from publicly available gene
annotations. The curse of dimensionality per-
taining to the gene expression based classi-
fication problem due to the large number of
attributes (genes) is turned into an advantage
in the secondary subgroup discovery task, as
here the original attributes become learning
examples.

Introduction

Many tasks of automated knowledge discovery
from gene expression microarray data by data min-
ing algorithms aim at constructing classifiers able to
diagnose a cancer type from a gene expression profile.
See eg. the seminal papers [1, 2] for reference.

This task is characterized by the abundance of
attributes (eg. simultaneously measured gene expres-
sion values) on one hand confronted with the short-
age of the available samples (eg. patients/tissues sub-
ject to measurements) on the other hand. It is known
from scientific discovery literature that such domains
are prone to overfitting: overfitted classifiers are char-
acterized by significantly decreased predictive accu-

racy on unseen samples compared to the training set
accuracy.

Informally, in domains characterized by a small
number of examples and a large number of at-
tributes, overfitting occurs because some artefacts
(“flukes”) of actually irrelevant attribute combina-
tions can emerge simply by means of chance and
appear significant with respect to the examples avail-
able to the machine learning algorithm.

To avoid the overfitting pitfall, state-of-art ap-
proaches construct complex classifiers that combine
relatively weak contributions of up to thousands of
genes (attributes) to classify a disease. Real-valued
support vector machine (SVM) [3] models are cur-
rently specifically popular in the gene expression
data mining domain. However, classifiers based on
many real-valued attributes have an important draw-
back: they are not appropriate for expert interpreta-
tion. The complexity of such classifiers limits their
transparency and consequently the biological insight
they can provide. Although it is possible to extract
the attributes with maximal contribution weight, the
logical connections among the extracted attributes
are then lost.

In our previous work [4], we have tested the
feasibility of constructing simple yet robust logic-
based classifiers, in the form of propositional rules
amenable to direct expert interpretation, by an in-
novative algorithmic methodology of subgroup dis-
covery. Such rules typically include two to five gene
expression attributes and, in contrast to markers
obtained from SVM schemes, these rules explicitly
stress the importance of the correlation of the activ-
ity (or non-activity) of a narrow gene set. Following
our work, further papers appeared [5, 6] proposing
methods for constructing very simple, interpretable
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 models for gene expression data.
Despite the obvious attractiveness stemming from

the interpretability of the classifiers yielded by the
above mentioned approaches, they still fall short of
the high dimensional (attribute-rich) classifiers in
terms of predictive accuracy in some benchmark sub-
tasks considered in [4, 2]. Preliminary experiments
[7] suggest that certain accuracy gap manifests itself
also in the predictive discovery tasks formulated in
[8].

We thus seem to face an inevitable trade-off be-
tween interpretability on one hand and accuracy on
the other hand pertaining to predictive gene expres-
sion data based models. Here we propose a method-
ology with the potential to overcome this challenge,
combining the advantages of both the approaches of
high-dimensional models and the simple logic mod-
els.

The fundamental idea is as follows. First, a high-
dimensional classification model C is constructed
from gene expression data D, wherein each sample
is assigned a class label c out of a set of class labels
C . Depending on the particular inductive method
employed, C may acquire different forms, but as a
general rule it will associate a high number of genes
(‘predictors’) to each of the target classes in D; we
denote this gene set by GC(c). In this paper we will
confine ourselves to the straightforward way origi-
nally employed by [1], where GC(c) is simply a set
of genes with expression highly correlated with the
class c.

The second step aims at improving the inter-
pretability of C. Informally, we do this by identifying
subgroups of genes in GC(c) (for each c∈ C ) which
can be summarized in a compact way. Put differently,
for each ci ∈ C we search for compact descriptions of
gene categories which correlate strongly with ci and
weakly with all c j ∈ C , j 6= i.

The subgroup discovery procedure just outlined is
approached as another supervised machine learning
process. This is, in a way, orthogonal to the primary
discovery task in that the original attributes (genes)
now become learning examples, each of which has
a class label c∈ C . To apply a discovery algorithm,
information about relevant features of the new exam-
ples is required. No such features (ie. ‘attributes’ of
the original attributes – genes) are usually present in
the gene expression microarray data sets themselves.
However, this information can be extracted from a
public database of gene annotations (in this paper,
we use the Entrez Gene database maintained at the
US National Center for Biotechnology Information).

In traditional machine learning, examples are ex-
pected to be described by a tuple of values corre-
sponding to some predefined, fixed set of attributes.
Note that a gene annotation does not straightfor-
wardly correspond to a fixed attribute set, as it has
an inherently relational character. For example, a

gene may be related to a variable number of cell
processes, play role in variable numbers of regula-
tory pathways etc. This imposes 1-to-many relations
hard to elegantly capture within an attribute set of
fixed size. Furthermore, a useful piece information
about a gene g may for instance be expressed by the
feature

g interacts with another gene whose functions
include protein binding.

Going even further, the feature may not include only
a single interaction relation but rather consider en-
tire chains of interactions. The difficulties of repre-
senting such features through attribute-value tuples
is evident.

In summary, we are approaching the task of sub-
group discovery from a relational data domain. For
this purpose we employ the methodology of relational
subgroup discovery we proposed in [9, 10] and imple-
mented in the RSD algorithm [11]. Using RSD, we
are able to discover knowledge such as

The expression of genes coding for proteins
located in the integral to membrane cell com-
ponent, whose functions include receptor ac-
tivity, has a high correlation with the BCR
class of acute lymphoblastic leukemia (ALL)
and a low correlation with the other classes
of ALL.

The RSD algorithm proceeds in two steps. First,
it constructs a set of relational features in the form
of first-order logic atom conjunctions. The entire set
of features is then viewed as an attribute set, where
an attribute has the value true for a gene (example)
if the gene has the feature corresponding to the at-
tribute. As a result, by means of relational feature
construction we achieve the conversion of relational
data into attribute-value descriptions.1 In the second
step, interesting gene subgroups are searched, such
that each subgroup is represented as a conjunction of
selected features. The subgroup discovery algorithm
employed in this second step is an adaptation of the
popular propositional rule learning algorithm CN2
[13].

Relational Feature Construction

The feature construction component of RSD aims
at generating a set of relational features in the form
for relational logic atom conjunctions. For example,
the feature exemplified informally in the previous
section has the relational logic form

interaction(g,G),
function(G,protein_binding)

1This process is referred to as propositionalization [12]
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 Here, upper cases denote existentially quantified
variables and g is the key term that binds a feature
to a specific example (here a gene).

The user specifies a grammar declaration which
constraints the resulting set of constructed features.
RSD accepts feature language declarations similar to
those used in the inductive logic programming sys-
tem Progol [14]. A declaration lists the predicates
that can appear in a feature, and to each argument
of a predicate a type and a mode are assigned. In a
correct feature, if two arguments have different types,
they may not hold the same variable. A mode is ei-
ther input or output; every variable in an input argu-
ment of a literal must appear in an output argument
of some preceding literal in the same feature. [15]
further dictate the opposite constraint: every output
variable of a literal must appear as an input variable
of some subsequent literal. Furthermore, the maxi-
mum length of a feature (number of contained liter-
als) is declared, along with optional constraints such
as the maximum variable depth [14], maximum num-
ber of occurrences of a given predicate symbol in a
feature, etc.

RSD generates an exhaustive set of features satis-
fying the language declarations as well as a the con-
nectivity requirement, which stipulates that no fea-
ture may be decomposable into a conjunction of two
or more features. For example, the following expres-
sion does not form an admissible feature

interaction(g,G1),
function(G1,protein_binding),

interaction(g,G2), component(G2,membrane)

since it can be decomposed into two separate fea-
tures. We do not construct such decomposable ex-
pressions, as these are redundant for the purpose
of subsequent search for rules with conjunctive an-
tecedents. Furthermore the concept of undecom-
posability allows for powerful search space pruning
[9, 10]. Notice also that the expression above may be
extended into an admissible undecomposable feature
if a further logic atom is added:

interaction(g,G1),
function(G1,protein_binding),

interaction(g,G2), component(G2,membrane),
interaction(G1,G2)

The construction of features is implemented as
depth-first, general-to-specific search where refine-
ment corresponds to adding a literal to the currently
examined expression. During the search, each search
node found to be a correct feature is listed in the
output.

A remark is in turn concerning the way constants
(such as protein_binding) are employed in features.
Rather than making the user responsible for declar-
ing all possible constants that may occur in features,

RSD extracts them automatically from the learning
data. The user marks the types of variables which
should be replaced by constants. For each constant-
free feature, a number of different features are then
generated, each corresponding to a possible replace-
ment of the combination of the indicated variables
with constants. RSD then only proceeds with those
combinations of constants, which make the feature
true for at least a pre-specified number of examples.

Finally, to evaluate the truth value of each feature
for each example for generating the attribute-value
representation of the relational data, the first-order
logic resolution procedure is used, provided by a Pro-
log language engine.

Subgroup Discovery

A subgroup discovery task is defined as follows:
Given a population of individuals and a property of
individuals we are interested in, find population sub-
groups that are statistically ‘most interesting’, e.g.,
are as large as possible and have the most unusual
statistical (distributional) characteristics with respect
to the property of interest.

Notice an important aspect of the above defini-
tion: there is a predefined property of interest, mean-
ing that a subgroup discovery task aims at charac-
terizing population subgroups of a given target class.
This property indicates that standard classification
rule learning algorithms could be used for solving
the task. However, while the goal of classification
rule learning is to generate models (sets of rules),
inducing class descriptions in terms of properties oc-
curring in the descriptions of training examples, in
contrast, subgroup discovery aims at discovering in-
dividual patterns of interest (individual rules describ-
ing the target class).

Rule learning typically involves two main proce-
dures: the search procedure that performs search to
find a single rule (described in this section) and the
control procedure (the covering algorithm) that re-
peatedly executes the search in order to induce a set
of rules.

Inducing a single subgroup rule

Our algorithm is based on an adaptation of the
standard propositional rule learner CN2 [16, 13]. Its
search procedure used in learning a single rule per-
forms beam search, starting from the empty con-
junct, successively adding conditions (relational fea-
tures). In CN2, classification accuracy of a rule is
used as a heuristic function in the beam search. The
accuracy2 of an induced rule of the form H ← B
(where H is the rule head - the target class, and B is
the rule body formed of a conjunction of relational

2In some contexts, this quantity is called precision.
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 features) is equal to the conditional probability of
head H, given that body B is satisfied: p(H|B).

The accuracy heuristic Acc(H ← B) = p(H|B) can
be replaced by the weighted relative accuracy heuris-
tic. Weighted relative accuracy is a reformulation of
one of the heuristics used in MIDOS [17] aimed at
balancing the size of a group with its distributional
unusualness [18].

The weighted relative accuracy heuristic is de-
fined as follows:

WRAcc(H ← B) = p(B) · (p(H|B)− p(H)). (1)

Weighted relative accuracy consists of two com-
ponents: generality p(B), and relative accuracy
p(H|B)− p(H). The second term, relative accuracy,
is the accuracy gain relative to fixed rule H ← true.
The latter rule predicts all instances to satisfy H; a
rule is only interesting if it improves upon this ‘de-
fault’ accuracy. Another way of viewing relative ac-
curacy is that it measures the utility of connecting
rule body B with rule head H. Note that it is easy to
obtain high relative accuracy with very specific rules,
i.e., rules with low generality p(B). To this end, gen-
erality is used as a ‘weight’ which trades off generality
of the rule (rule coverage p(B)) and relative accuracy
(p(H|B)− p(H)).

In the computation of Acc and WRAcc all proba-
bilities are estimated by relative frequencies3 as fol-
lows:

Acc(H ← B) = p(H|B) =
p(HB)
p(B)

=
n(HB)
n(B)

(2)

WRAcc(H ← B) =
n(B)

N

(
n(HB)
n(B)

− n(H)
N

)
(3)

where N is the number of all the examples, n(B) is
the number of examples covered by rule H ←B, n(H)
is the number of examples of class H, and n(HB) is
the number of examples of class H correctly classified
by the rule (true positives).

Inducing a set of subgroup rules

In CN2, for a given class in the rule head, the rule
with the best value of the heuristic function found in
the beam search is kept. The algorithm then removes
all examples of the target class satisfying the rule’s
conditions (ie. covered by the rule) and invokes a new
rule learning iteration on the remaining training set.
All negative examples (i.e., examples that belong to
other classes) remain in the training set.

In this classical covering algorithm, only the first
few induced rules may be of interest as subgroup de-
scriptors with sufficient coverage, since subsequently

3Alternatively, the Laplace [19] and the m-estimate [20]
could also be used.

induced rules are induced from biased example sub-
sets, i.e., subsets including only positive examples not
covered by previously induced rules. This bias con-
strains the population of individuals in a way that is
unnatural for the subgroup discovery process, which
is aimed at discovering interesting properties of sub-
groups of the entire population.

In contrast, RSD uses the weighted covering al-
gorithm, which allows for discovering interesting
subgroup properties in the entire population. The
weighted covering algorithm modifies the classical
covering algorithm in such a way that covered posi-
tive examples are not deleted from the set of exam-
ples which is used to construct the next rule. Instead,
in each run of the covering loop, the algorithm stores
with each example a count that indicates how many
times (with how many induced rules) the example
has been covered so far.

Initial weights of all positive examples ej equal 1.
In the first iteration of the weighted covering algo-
rithm all target class examples have the same weight,
while in the following iterations the contributions of
examples are inverse proportional to their coverage
by previously constructed rules; weights of covered
positive examples thus decrease according to the for-
mula 1

i+1, where i is the number of constructed rules
that cover example ej . In this way the target class ex-
amples whose weights have not been decreased will
have a greater chance to be covered in the following
iterations of the weighted covering algorithm.4

The combination of the weighted covering algo-
rithm with the weighted relative accuracy thus im-
plies the use of the following modified WRAcc heuris-
tic:

WRAcc(H ← B) =
n′(B)

N′

(
n′(HB)
n′(B)

− n(H)
N

)
(4)

where N is the number of examples, N′ is the sum of
the weights of all examples, n(H) is the number of
examples of class H, n′(B) is the sum of the weights
of all covered examples, and n′(HB) is the sum of the
weights of all correctly covered examples.

An experiment

Materials and methods

We follow here the predictive classification
problem defined in [8] aiming at distinguishing
among six classes of pediatric acute lymphoblas-
tic leukemia from gene expression profiles ob-
tained by the Affymetrix HG-U133A microarray

4Whereas this approach is referred to as additive in [21], an-
other option is the multiplicative approach, where for a given
parameter γ < 1, weights of positive examples covered by i
rules decrease according to γ i . Both approaches have been im-
plemented in RSD, but additive weights lead to better results.
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 chip. The data contains 132 class-labelled sam-
ples of expression vectors and it can be ob-
tained along with a detailed description from
http://www.stjuderesearch.org/data/ALL3/.

For each class c we first extracted a set of genes
G(c) whose expression is highly correlated with c.
More precisely, for each gene g and class c we evalu-
ated the function

f (g,c) =
P(c,g)

P(c) ·P(g)
(5)

where P(c) and P(g) denote the probability (es-
timated via relative frequencies) that a randomly
drawn sample falls into class c, and that g is ex-
pressed in that sample, respectively. P(c,g) is the
joint probability of both events. If the two events
are statistically independent, f (g,c) equals 1. If class
c and expression of g are more likely to occur to-
gether, f (g,c) will be greater than 1. We set a fixed
threshold on f (g,c) so that ∀g,c : g∈G(c) whenever
f (g,c) ≥ 5. As a result we obtained on average 257
correlating genes for every class.

To access the annotation data for every gene
considered, it was necessary to obtain unique gene
identifiers from the microarray probe identifiers
available in the original data. We achieved this
by combining the biobase, annotate and hgu133a
packages for the R system for statistical com-
puting. The three packages are available from
http://www.bioconductor.org/ and R is available
from http://www.r-project.org/.

Knowing the gene identifiers, the annotations
can be accessed through hypertext queries to
the Entrez Gene database, which is available at
http://www.ncbi.nlm.nih.gov/. We developed a
program script in the Python language, which auto-
matically queries the server for the gene annotations,
parses them and produces their structured, relational
logic representations. This script is available on re-
quest to the first author.

Examples of subgroups discovered

Here we present two examples of gene subgroups
discovered by RSD, converted to natural language
from the original relational logic descriptions. We
also attach a biologist’s (2nd author) interpretation.
The two examples are concerned with subgroups with
unusually high frequency of the BCR (TEL, respec-
tively) type of ALL.

BCR class: Genes coding for proteins located
in the integral to membrane cell component,
whose functions include receptor activity.

Comment: BCR/abl is a classic example of a
leukemia driven by spurious expression of a fusion
protein expressed as a continuously active kinase pro-
tein on the membrane of leukemic cells.

TEL class: Genes coding for proteins located
in the nucleus whose functions include pro-
tein binding and whose related processes in-
clude transcription.

Comment: By contrast to BCR, the TEL leukemia
is driven by expression of a protein, which is a tran-
scription factor active in the nucleus.

As a result, our finding related to the location,
function and processes associated to the subgroups,
represent the most salient features of these respective
types of acute lymphoblastic leukemia.

Discussion

In this paper we have proposed a methodology for
predictive classification from gene expression data,
able to combine the robustness of high-dimensional
statistical classification methods with the compre-
hensibility and interpretability of simple logic-based
models. Our methodology proposes to first construct
a robust classifier combining contributions of a large
number of gene expression values, and then finding
compact, relational descriptions of subgroups among
genes employed in the classifier.

It is noteworthy that the ‘post-processing’ step
is also a machine learning task, in which the curse
of dimensionality (the number of attributes – gene
expressions measured) usually ascribed to the type
of classification problem considered, actually turns
into an advantage. The high number of attributes,
incurring the risk of overfitting, turns into a high
number of examples, which on the contrary works
against overfitting in the subsequent subgroup dis-
covery task. Furthermore, the dimensionality of the
secondary attributes (relational features of genes ex-
tracted from gene annotations) can be conveniently
controlled via suitable constraints of the language
grammar used for the automatic construction of the
gene features.

The limited experimental evaluation conducted
within the present study obviously serves only as a
first ‘sanity check’ and more elaborate assessment
has yet to be conducted in a more extensive set of
gene expression based classification problems. This
is further emphasized by the fact that the division
of ALL into the respective classes [8], which we ac-
cepted here, has not yet been fully established.

However, we have already confirmed the techni-
cal feasibility of the proposed approach as well as
the fact that the subgroups discovered as early as
in the first experimental run appear meaningful and
amenable to interpretation to a biologist. We thus
have high hopes on discovering novel, yet reliable
knowledge from the relational combination of gene
expression data with public gene annotation data-
bases in future applications of our methodology.
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F.Ž. is grateful to the Grant Agency of the Czech
Academy of Sciences (CAS) for the support through
the project KJB201210501 Logic Based Machine
Learning for Genomic Data Analysis. J. T. is sup-
ported by Children Cancer Research Fund and Uni-
versity of Minnesota Cancer Center. O.Š. is sup-
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