
The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 AN ARCHITECTURE FOR BUILDING COST-EFFECTIVE, FLEXIBLE 
AND INTEROPERABLE XML HEALTHCARD APPLICATIONS 

 
A. Georgoulas* and D. Koutsouris* 

 
* National Technical University of Athens/Biomedical Engineering Laboratory, Athens, Greece 

 
ageorg@biomed.ntua.gr 

 
 

Abstract: The work reported in this paper concerns 
the design and implementation of an object-
oriented framework for developing cost-effective, 
flexible and interoperable healthcard solutions in 
Java, that make use of ISO 7816-compliant smart 
cards, on different target platforms such as 
Windows, network computers and handheld 
devices. The framework comprises both a 
methodology and a set of high-level Java 
Application Programming Interfaces (APIs) which 
facilitate healthcard applications development, 
covering all healthcare specific requirements and 
needs. Our implementation is being demonstrated 
and tested in terms of efficiency, compatibility, 
portability and performance using sample 
healthcard applications that have been developed 
for this reason. 
 
Introduction 
 

While the use of smart cards in healthcare promises 
to improve both the quality and the availability of 
healthcare services, providing a convenient and secure 
medium for storing and communicating medical 
information, the adoption of healthcard 
implementations within the National Healthcare 
Systems and IT strategies is relatively slow, blocked 
by a number of technical, administrative and medical 
barriers. The most important barrier seems to be that 
existing healthcard solutions do not comply with a 
number of requirements and qualitative parameters of 
e-health (and e-government in general) [1]: 
compatibility and interoperation with the existing IT 
infrastructure, extensibility, independence from 
specific suppliers & vendors and last but not least, 
cost-effectiveness. 

The current paper addresses the above challenges 
by proposing a reference architecture for developing 
cost-effective, flexible and interoperable XML 
healthcard applications, using open source software. 

The paper is organized as follows: In the next 
Section we present some background information 
regarding current smart card application development 
problems and limitations. The ensuing Section 
introduces the overall architecture followed by the 
specific implementation details. In the Results section 
the architecture’s innovative features and performance 
testing outcomes are presented through selected pilot 
applications, while the last Section summarizes the 
results and draws the major conclusions. 

Background Information 
 

The closed architecture of today’s smart card 
operation systems and lack of high-level Application 
Programming Interfaces (APIs), have turned card-
application development to a very difficult and time-
consuming task, requiring high-specialized 
programmers and dedicated software tools [2]. Current 
healthcard solutions are proprietary, expensive in 
development and maintenance, and in most cases face 
difficulties to interoperate and exchange information 
with existing medical applications or databases, due to 
lack of standards (both medical and technical) or partial 
implementation of existing ones. Applications usually 
work only with a specific type of card, reader and 
platform, resulting in increased dependence on specific 
vendors and suppliers. 

Card Application Development: Smart card 
applications essentially comprise two parts: the 
application part resident on the card, henceforth called 
card-resident application and the application part 
running in the computer henceforth called the card-
using or host application [2]. File system cards 
represents the most common smart card type in use 
today, being a reliable, secure and cost-effective 
solution (in contrast with the - yet expensive - Java 
Cards). Such a file system (defined in part 4 of the 
ISO7816 standard [3]) is built based on three 
components: the Master File (MF), which is the root of 
the file system, the Dedicated File (DF), which is 
comparable to a directory of a UNIX or PC file system, 
and the Elementary File (EF), containing the actual data. 

The card-resident part comprises the data kept on the 
card in the context of an application. Thus, developing a 
card-side application involves building a complex file 
structure, where a single DF contains several DFs and 
EFs representing the required data fields. However, this 
approach has serious drawbacks: accessing these data 
requires a dedicated external application, which has 
knowledge of all card-side implementation details (file 
paths, file names and semantics) from the beginning. 
Furthermore, if a new standard evolves, regarding e.g. 
the Emergency Medical Record, the application file 
structure has to change completely in order to include 
new fields or remove others. This could be a daunting 
task, especially when talking for applications containing 
large number of individual fields. Therefore it is hard to 
communicate and keep up with the rest medical 
applications and databases of a healthcare system. 
 



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 
Architecture Overview 

 
As shown in Figure. 1, the architecture comprises 

four separate layers, which establish the necessary 
interfaces between the system’s distributed parts, from 
the healthcard to the end-user application [4]. In the 
following paragraphs we attempt a closer look to each 
layer, explaining the functionality and implementation 
details of the major structural modules. 

 

 
 
Figure 1: Overall Architecture 
 

Smart Card Layer: It concerns the applications 
stored onto the smart card chip. The architecture 
introduces the XML document model for developing 
card-side applications. As shown in Figure 2, each 
card-side application (e.g. Demographics, e-
Prescription, etc) is represented by an XML document, 
which holds both the application structure (meta-data) 
as well as the actual data. This document is stored on 
single card EF files, one for each separate application. 

Thereby we avoid building complex card file 
structures, which is very difficult to modify or update 
in the future. Furthermore, the card application is self-
descriptive since it holds all necessary information for 
data binding (application name, data items names, etc), 
and no longer depends on external resources. 

Application management is implemented through 
the Application Manager component, an innovative 
control mechanism, which also facilitates multi-
application capabilities on the card. The Application 
Manager, which comprises an XML document stored 
in a single EF card file, serves as the main entry point 
for interaction with the external application. This 
document contains all necessary information for 
managing the card-residing applications without prior 
knowledge of the card file structure. 

 
 
Figure 2: Card-side application model 
 

Security issues: the proposed model enforces to use 
the same security level for the whole document (e.g. one 
or two PINs, secure messaging, etc) for the whole 
document, since the whole application is stored within a 
single EF. However, the architecture offers the 
flexibility of using advanced security measures at the 
application level, such as XML Signature, XML Access 
Control, etc. 

Smart card capacity: Smart card’s limited memory 
capacity seems to be the major problem regarding the 
use of XML documents for representing card-side 
applications. While XML format makes the use and 
interchange of data easier and more user-configurable, it 
substantially increases the size of the file over the size 
when the same data is represented in its raw format. 
This inherent inflation of the file sizes - or “bloat” - can 
represent an average size of 100-400%, being thus a 
critical problem when data has to be transmitted quickly 
or stored compactly as in our case [5]. The common 
smart cards in use today, offer about 8-16 Kbytes of 
available memory for storing data (may reach 32 to 64 
Kbytes for more expensive cards). This is insufficient 
estimating that even a small XML medical document 
would have an average size of 4-10 Kbytes. The most 
common approach for overcoming this limitation is the 
application of lossless data compression techniques, 
which would decrease the size of the XML documents 
stored on the card, without wasting the benefits came up 
by the use of XML format. In this respect we performed 
a series of tests focusing on the performance of the 
available compression techniques. The outcome of these 
tests is presented in detail in the Results section. 

Middleware Layer: The middleware layer serves as 
an intermediate between the on-card applications and 
the host system. The communication is carried out 
through the card reader device plugged (or integrated) to 
the host system. This requires the appropriate software 
components implementing the low-level communication 
protocols for data and commands interchange. The 
primary goal here is to hide complexity, while achieving 
maximum independence from card and reader 
manufacturers. Our choice for the middleware layer is 



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 the OpenCard Framework (OCF) [6]. The OpenCard 
Framework is an open standard, providing both a 
reference architecture and a set of java APIs that 
enable application developers and service providers to 
build and deploy smart card aware solutions in any 
OpenCard-compliant environment. The applications 
developed against OCF high-level APIs can work with 
different cards and readers by just plugging the 
corresponding CardService and CardTerminal 
implementations (usually offered by the 
manufacturers) into the architecture [2]. This approach 
ensures that differences or changes in the card 
operating system (e.g. use of other smart card), in the 
card reader or in the application management scheme 
used by the card issuer do not impact the user 
application code. 

XMLCard Library: The XMLCard library is the 
core component of the architecture, providing a high-
level interface to access and use the on-card 
applications. The library (edu.biomed.ntua.xmlcard) 
has been developed in pure Java and it exclusively 
depends to open source third party resources. Figure 3 
describes the xmlcard package: 

 

 
 
Figure 3: xmlcard package 
 

The XMLCard class represents the actual smart 
card, providing to the programmers a high-level API to 
access and process the on-card applications. The 
XMLCardApplication class models the on-card XML 
application, hiding the underlying complexity, 
enabling the transparent exchange of XML documents 
between the host PC and the smart card. All smart 
card-related functionality (PIN protection, card file 
selection, etc) is handled in a lower level of the 
architecture, totally transparently to the end-
application programmer. The API also includes a set 
of static methods (XMLSecurity class) in order to 
perform standard XML Security-related functionality 
(signing, verifying, etc) both on the PC and the smart 
card. Using this API, developers can link the end-user 
applications to the on-card applications with only a 

few lines of code, focusing more to the graphical 
interface of the application. 

The library is highly configurable through a flexible 
and extendible properties mechanism. Using this 
feature, the users can configure a variety of system 
operation parameters, like the preferred XML signature 
method, the cryptographic keys to use to use, etc. 
Furthermore, the developers of end-user applications 
can use this mechanism to add their custom parameters. 

Presentation Layer: It is the upper layer of the 
architecture and includes the various end-user medical 
applications that make use of the healthcard. As it was 
described earlier, using the XMLCard API the user 
applications interact with the healthcard transparently, 
actually exchanging XML documents. The next step is 
to present the application data to the end-users through 
an interactive graphical user interface (GUI). Even there 
is no constrain about the type of the end-user 
application, the use of java and XML format enables 
utilization of more flexible solutions for data 
presentation than just developing an ordinary desktop 
application (like a standard java swing application). For 
example, using XSL transformations we can present the 
application within a common web browser in the 
context of a web application. Separating the document's 
content and the document's styling information allows 
displaying the same document on different media (like 
PC screen, mobile devices, etc), and it also enables 
users to view the document according to their 
preferences and abilities, just by modifying the 
stylesheet. Furthermore, any time a medical application 
is modified (e.g. to conform to the latest related 
standard) there is no need to change the end-user 
application code, except updating the corresponding 
stylesheet. Another promising approach is the usage of 
techniques that separate the application logic (which can 
be written in Java) from the user interface, which can be 
described in a markup language as XML [7]. 

Application Deployment: As it is mentioned earlier, 
the architecture does not set any constrain regarding the 
type of the end-user application. Similarly, application 
deployment can be performed in the way that fits better 
to the specific application. If we talk about a web 
application, this is available through a common web 
browser, so there is no need to go through a specific 
installation procedure. However, if we are talking of a 
rich desktop application which needs installation to the 
target PC or other device, it is clear that we need a more 
flexible approach, in order to fully exploit the 
architecture features (portability, cross-platform 
interoperability, easy of use, etc). In this respect, we 
have tested and propose the use of Java Web Start. Java 
Web Start [8] provides a platform-independent, secure, 
and robust deployment technology. It enables 
developers to deploy full-featured applications to end-
users by making the applications available on a standard 
web server. Java Web Start caches resources locally on 
the disk, but also provides a secure execution 
environment and a virtually transparent updating facility 
for applications. For security reasons, Java Web Start 



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 applications run by default in a restricted environment, 
known as a java sandbox. However, if the application's 
JAR files are digitally signed by a trusted authority we 
can easily provide for functionality that goes beyond 
what is allowed in the sandbox. 
 
Results 
 

The architecture’s features were tested and 
presented through a pilot healthcard system supporting 
some basic functionality. For the Patient Data Card 
(PDC) we have chosen two characteristic medical 
applications, the Electronic Medical Summary (eMS) 
and the Electronic Prescription, while the Healthcare 
Professional Card (HPC) was mainly used for 
performing security functions (e.g. digital signature). 

For the tests we used the popular Gemplus GPK 
8K/16K file system cards, as well as the IBM MFC 
card. Since GPK cards offer additional cryptographic 
capabilities on the card, it was used for both PDC and 
HPC, while MFC card was used only for PDC. 
Regarding the card reader devices, we use simple 
contact readers, like Gemplus GemPC410 and 
Schlumberger Reflex 60, connected to serial or USB 
port. For both cards and readers, the OCF plug-ins are 
freely available by the manufacturers over the internet 
[9] [10]. 

e-Prescription application: For the purposes of our 
study, we developed a custom prescription document 
(Figure 4), based on the most common standardized 
data sets, like for example the ones proposed by 
NETLINK project [11] and CEN/TC 251 [12].  

 

 
 
Figure 4: Digitally signed e-Prescription XML 
document 

The architecture also provides the flexibility to use 
different document standards in the future without any 
modifications on the applications’ code. The integrity 
and the origin of the prescription are protected using 
W3C-compliant XML digital signatures [13] generated 
by the HPC (replacing handwritten signatures used 
today).  

Figure 5 shows how the document is presented in the 
context of a desktop Java application. The e-
Prescription application is based on the existing paper-
based business case. The application scenario includes 
two basic functions, prescribing and dispensing. The 
link between these two functions is the PDC, which 
carries the actual information (prescription document), 
forming a Virtual Portable Network between the 
prescribing and the dispensing agents. 

 

 
 
Figure 5: e-Prescription application 
 

eMS application: An electronic medical summary is 
a subset of patient data suitable for communication 
among primary health care practitioners and other 
health care providers for the purpose of sharing the care 
of a patient. An e-MS for a patient includes all the 
information (i.e. Current Medications, Medical History, 
Surgical History, Allergies, Immunization, etc) essential 
for ensuring the patient receives exemplary health care 
from every health care provider involved in his or her 
care, including primary care physicians and third-party 
care providers such as specialists, diagnostic 
technicians, and tertiary (emergency) care providers. 
Figure 6 shows how the e-MS application (as defined by 
the HL7/CDA standard [14]) is presented within a 
common web browser in the context of a web 
application. 



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 

 
 
Figure 6: e-MS application 

 
XML Compression Testing: Text compression 

algorithms have been the subject of extensive research 
over many years and are at an advanced stage of 
development. Any algorithm of this type can be easily 
applied to the text representation of XML documents. 
Our test involve compressing a variety of XML 
documents (more than 1000 files) using the most 
common available compression algorithms. The 
documents chosen for the corpus reflect a wide a 
variety of sources and file sizes (0 to 100.000 bytes), 
in order to avoid skewing our results to a particular 
kind of data. Each document is compressed through a 
custom Java application developed for this purpose, 
using the following (free) compression libraries 
implemented in java: zlib [15], bzip2 [16], gzip [17] 
and Arithmetic Coding [18]. 

As resulted from our tests, brute-force compression 
seems to be the best choice, since XML is text with a 
lot of repetition, so it compresses surprisingly well. 
Some of the results are shown in the following 
composite diagram (Figure 7). 

 

 
 
Figure 7: Compression performance diagram 

The left axis shows the compression ratio (i.e. the 
size of compressed file as percentage of the original 
file), while the right axis represents the final size of the 
compressed file (using zlib), which is essential for our 
case. In general, all methods perform similarly well, 
having an average compression ratio of better than 4:1. 
Zlib has slightly better performance (average 
compression rate 4,28:1), especially for files size 500-
10.000 bytes, while only gzip was slightly better for 
larger files (>10.000 bytes).  

Our experiment also includes testing the space 
requirements of the same medical application using both 
the card files–based and the XML document method. As 
mentioned earlier, using the card-file method each data 
item is stored in the corresponding EF file on the card. 
Each card file (EF or DF) is represented within the Card 
Operating System through its “descriptor”. For example, 
in GPK8K cards each EF has a 22 bytes long descriptor, 
while each DF has a 20 bytes long descriptor. Thus, if 
an application has 50 distinct data fields the additional 
space required (overhead) on the card will be 50*22 = 
1100 bytes. 

If the same information is represented using XML 
format, the outcome will be an XML document much 
bigger than the actual data size (due to XML “bloat”). 
However, our tests show that applying text compression 
techniques the document size is dramatically reduced, 
especially as the original document complexity and size 
grows. The results presented in the following table 
concern three sample medical applications, the e-MS, 
the Emergency Medical Set (EDS) as defined by the 
CEN/TC 251 specification [12] and a custom 
implementation of en electronic prescription document 
(electronically signed). 

 
Table 1: Space requirements testing results 
 

Application: e-MS EDS e-Prescription 
(signed) 

Size (XML): 12574 3240 4292 
Size (data) 2069 808 527 
No of fields 185 49 52 
EF overhead 4070 1078 1144 
zlib size 1221 998 1530 
Card File 6139 1886 1671 

 
Taking for example the eMS application, if we use 

the card file approach it will require building a complex 
structure of 185 EF files on the smart card, using a total 
space of (at least) 6139 bytes for storing 2069 bytes of 
information. Using the XML document approach (in 
conjunction with zlib compression) will require a single 
EF with total capacity of only 1221 bytes. In every case 
the compressed XML document requires less space, 
even when it is digitally signed. As shown in the 
Compression Performance diagram (right axis), for the 
range of 5000 to 16000 bytes (which is the majority of 
the medical XML documents used) the XML document 
will be compressed to less than 2.000-4.000 bytes, while 
for the range of 2000 to 5000 bytes (which represents 



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 the majority of administrative applications) the XML 
document will be compressed to less than 1.000-1.500 
bytes. This means that a common smart card (with 
average memory of 12000 bytes) may hold an 
adequate number of distinct XML medical 
applications, overcoming the “bloat” that XML causes. 

Conclusively we could say that development 
process was very fast both for the card-side and the 
host-side parts. Most of the effort was put into the 
design of the user interface (layout, user options, etc) 
and the packaging of the application. Development 
cost was very low, and no additional cost for software 
licenses was required in any stage of the process, since 
all used libraries and tools were either open source or 
freely available. The applications worked fine with all 
tested smart cards and readers without any 
modification in the source code. On-card applications 
(XML documents) were updated with no difficulties, 
while the GUI was automatically adapted to the new 
documents through the corresponding stylesheets. 
Security functionality was also tested (especially PIN 
protection and digital signatures) in terms of 
transparency, usability, performance and reliability, 
showing satisfactory behaviour. 
 
Conclusions & Future Work 
 

This paper presents a reference architecture for 
developing cost-effective, flexible and interoperable 
healthcard solutions in Java, that make use of ISO 
7816-compliant smart cards, on different target 
platforms such as Windows, network computers and 
handheld devices. 

From the technical point of view, the proposed 
architecture brings an innovative approach to card 
application development, providing the tools for 
transparent interaction between the on-card and the 
end-user applications. The architecture’s novelty relies 
less in the technologies used, than in the way it 
combines them in order to provide a comprehensive, 
end-to-end methodology for building open source 
healthcard systems. This will enable the evolvement of 
new, value-added healthcard services and applications, 
thus accelerating the acceptance and deployment of 
smart card solutions within the National Healthcare 
Systems and IT strategies. 

Work so far includes the development of the core 
XMLCard library, which is based on freely available 
open source java libraries. XMLCard is being tested in 
terms of efficiency, compatibility, portability and 
performance. Furthermore, sample on-card and end-
user medical applications are being developed using 
various presentation techniques. 

Future work includes overall performance testing 
of the whole supported functionality (compression, 
cryptographic operations, XML transformations), as 
well as testing the capability of smooth integration and 
interoperation with existing systems and applications. 
 
 

References 
 

[1] DIETZEL G.T.W., (2003), ‘The electronic 
Health Card as a Tool for Seamless Care’, 
Advanced Health Telematics and 
Telemedicine - The Magdeburg Expert 
Summit Textbook, Edited by: B. Blobel and P. 
Pharow, Vol. 96 in the "Studies in Health 
Technology and Informatics”, (Ed): IOS Press, 
pp. 213-217 

[2] HANSMANN U., NICKLOUS M.S., SHACK T., 
SELIGER F. (2000), ‘Smart card application 
development using Java’, (Ed): Springer. 

[3] International Organisation for Standardization, 
ISO/IEC 7816-1,2,3,4,5,6 Standards, Internet 
Site Address: www.iso.org 

[4] GEORGOULAS A., GIAKOUMAKI A., 
KOUTSOURIS D. (2003), ‘A Multi-layered 
Architecture for the Development of Smart 
Card-based Healthcare Applications’, Proc. 
25th Annual International Conf. of the IEEE 
Engineering in Medicine and Biology Society 
(EMBS), Cancun, Mexico, 2003. 

[5] MEDGGINSON D. (2005), ‘XML Performance 
and Size‘, (Ed): Addison Wesley Professional, 
Retrieved April 15, 2005, Internet site address: 

[6] www.awprofessional.com/articles/article.asp?p
=367637. The OpenCard Framework (OCF), 
Internet site address: http://www.opencard.org 

[7] XUL language (XML User Interface 
Language), Internet site address: 
http://xul.sourceforge.net/ 

[8] Java WebStart Technology, Internet site 
address: 
http://java.sun.com/j2se/1.5.0/docs/guide/java
ws/index.html 

[9] The OpenCard @ Gemplus Portal, Internet site 
address: 
http://www.gemplus.com/techno/opencard/ 

[10] Reflex60 Open Card Framework Driver, Forge 
Information Technology, Internet Site 
Address: 
www.forge.com.au/Research/products/freewar
e.html 

[11] Netlink G8 Healthcare Data Card project, 
Internet Site Address: 
http://www1.va.gov/card/ 

[12] European Standardization of Health 
Informatics, CEN/TC 251, Internet Site 
Address: www.centc251.org/ 

[13] The Internet Engineering Task Force (IETF), 
RFC 3075, ‘XML-Signature Syntax and 
Processing’, Internet Site Address: 
www.ietf.org/rfc/rfc3075.txt. 

[14] HL7 Standards, “The Clinical Document 
Architecture (CDA)”, Internet Site Address: 
http://www.hl7.org/ 

[15] Zlib compression library, Internet site address: 
http://www.zlib.net/ 



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 [16] Bzip2 compression library, Internet site 
address: http://www.bzip.org/ 

[17] Gzip compression library, Internet site 
address: http://www.gzip.org/ 

[18] Compression via Arithmetic Coding, Internet 
site address: 
www.colloquial.com/ArithmeticCoding/ 

 


